PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of standard duration maximum rainfall by using regression models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gauging stations of meteorological networks generally record rainfall on a daily basis. However, sub-daily rainfall observations are required for modelling flood control structures, or urban drainage systems. In this respect, determination of temporal distribution of daily rainfall, and estimation of standard duration of rainfall are significant in hydrological studies. Although sub-daily rainfall gauges are present at meteorological networks, especially in the developing countries, their number is very low compared to the gauges that record daily rainfall. This study aims at developing a method for estimating temporal distribution of maximum daily rainfall, and hence for generating maximum rainfall envelope curves. For this purpose, the standard duration of rainfall was examined. Among various regression methods, it was determined that the temporal distribution of 24-hour rainfall successfully fits the logarithmic model. The logarithmic model’s regression coefficients (named a and b) were then linked to the geographic and meteorological characteristics of the gauging stations. The developed model was applied to 47 stations located at two distinct geographical regions: the Marmara Sea Region and Eastern Black Sea Region, Turkey. Various statistical criteria were used to test the method's accuracy, and the proposed model provided successful results. For instance, the RMSE values of the regression coefficients a and b in Marmara Regions are 0.004 and 0.027. On the other hand, RMSE values are 0.007 and 0.02 for Eastern Black Sea Region.
Wydawca
Rocznik
Tom
Strony
281--288
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Ege University, Faculty of Engineering, 35100, Bornova – İZMİR, Turkey
  • Ege University, Faculty of Engineering, 35100, Bornova – İZMİR, Turkey
  • Ege University, Faculty of Engineering, 35100, Bornova – İZMİR, Turkey
autor
  • Ege University, Faculty of Engineering, 35100, Bornova – İZMİR, Turkey
Bibliografia
  • AL MAMUN A., BINSALLEH MD N., MOHAMAD N.H. 2018. Estimation of short-duration rainfall intensity from daily rainfall values in Klang Valley, Malaysia. Applied Water Science. Vol. 8(7) p. 1–10. DOI 10.1007/s13201-018-0854-z.
  • ALY A., PATHAK C., TEEGAVARAPU R., AHLQUIST J., FUELBERG H. 2009. Evaluation of improvised spatial interpolation methods for infilling missing rainfall records. World Environmental and Water Resources Congress p. 1–10. DOI 10.1061/41036(342)598.
  • Australian Bureau of Meteorology, Hydrometeorological Advisory Service 2003. The estimation of probable maximum rainfall in Australia: Generalized short-duration method [online]. AGPS, Canberra. [Access 16.08.2020]. Available at: http://www.bom.gov. au/water/designRainfalls/document/GSDM.pdf
  • BONNER W.D. 1998. Future of the national weather service cooperative observer network. Washington, D.C. National Research Council, National Academy Press. ISBN 978-0-309-06146-9 pp. 78.
  • BORGA M., VEZZANI C., FONTANA G.D. 2005. Regional rainfall depth-duration–frequency equations for an Alpine region. Natural Hazards. Vol. 36 p. 221–235. DOI 10.1007/s11069-004-4550-y.
  • CHOI J., SOCOLOFSKY S.A., OLIVERA F. 2008. Hourly disaggregation of daily rainfall in Texas using measured hourly rainfall at other locations. Journal of Hydrologic Engineering. Vol. 13. No. 6 p. 479–487. DOI 10.1061/(ASCE)1084-0699(2008)13:6(476).
  • CHOWDHURY R., ALAM J.B., DAS P., ALAM M.A. 2007. Short duration rainfall estimation of Sylhet: IMD and USWB method. Journal of Indian Water Works Association. Vol. 39(4) p. 285–292.
  • EGODAWATTA P., THOMAS E., GOONETILLEKE A. 2007. Mathematical interpretation of pollutant wash-off from urban road surfaces using simulated rainfall. Water Research. Vol. 41(13) p. 3025– 3031. DOI 10.1016/j.watres.2007.03.037.
  • ELIBÜYÜK M., YILDIZ E. 2010. Türkiye’nin Coğrafi Bölge ve Bölümlerine Göre Yükselti Basamakları ve Eğim Grupları [Altitude steps and slope groups of Turkey in comparison with geographical regions and sub-regions]. Coğrafi Bilimler Dergesi. Vol. 8 p. 027–055. DOI 10.1501/Cogbil_0000000104.
  • ERBEKÇI E. 2006. Türkiye'de Yağış Olasılığının Zamansal ve Alansal Değişimleri [Temporal and spatial variations of precipitation probability in Turkey]. MSc Thesis. Çanakkale, Turkey. Çanak-kale Onsekiz Mart University, Institute of Social Sciences pp. 87.
  • FIRAT M., DIKBAŞ F., KOÇ A.C., GÜNGÖR M. 2012. Classification of annual rainfall and identification of homogeneous regions with K-means method. IMO Teknik Dergi. Vol. 383 p. 6037–6050.
  • GLASBEY C.A., COOPER G., MCGECHAN M.B. 1995. Disaggregation of daily rainfall by conditional simulation from a point-process model. Journal of Hydrology. Vol. 165(1–4) p. 1–9. DOI 10.1016/0022- 1694(94)02598-6.
  • GUPTA V.K., WAYMIRE E.C. 1993. A statistical analysis of mesoscale rainfall as a random cascade. Journal of Applied Meteorology. Vol. 32(2) p. 251–267. DOI 10.1175/1520-0450(1993)032<0251: ASAOMR>2.0.CO;2.
  • GYASI-AGYEI Y. 2005. Stochastic disaggregation of daily rainfall into one-hour time scale. Journal of Hydrology. Vol. 309(1–4) p. 178– 190. DOI 10.1016/j.jhydrol.2004.11.018.
  • HADDAD K., RAHMAN A. 2014. Derivation of short-duration design rainfalls using daily rainfall statistics. Natural Hazards. Vol. 74 p. 1391–1401. DOI 10.1007/s11069-014-1248-7.
  • HADI S.J., TOMBUL M. 2018. Long-term spatiotemporal trend analysis of precipitation and temperature over Turkey. Meteorological Applications. Vol. 25 p. 445–455. DOI 10.1002/met.1712.
  • HINGRAY B., HAHA M.B. 2005. Statistical performances of various deterministic and stochastic models for rainfall series disaggregation. Atmospheric Research. Vol. 77 p. 152–175. DOI 10.1016/j. atmosres.2004.10.023.
  • IRDEM C. 2005. Spatial and temporal variability of rainfall in terms of intensity in Turkey. MSc Thesis. Çanakkale, Turkey. Çanakkale Onsekiz Mart University, Institute of Social Sciences pp. 139.
  • KADIOGLU M., ŞEN Z. 1998. Power-law relationship in describing temporal and spatial precipitation pattern in Turkey. Theoretical and Applied Climatology. Vol. 59 p. 93–106.
  • KOUTSOYIANNIS D., ONOF C. 2001. Rainfall disaggregation using adjusting procedures on a Poisson cluster model. Journal of Hydrology. Vol. 246 p. 109–122. DOI 10.1016/S0022-1694(01) 00363-8.
  • KOUTSOYIANNIS D., ONOF C., WHEATER H.S. 2003. Multivariate rainfall disaggregation at a fine timescale. Water Resources Research. Vol. 39(7) p. 1–18. DOI 10.1029/2002WR001600.
  • KÖMÜŞCÜ A.Ü., ÇELIK S. 2013. Analysis of the Marmara flood in Turkey, 7–10 September 2009: An assessment from hydrometeorological perspective. Natural Hazards. Vol. 66 p. 781–808. DOI 10.1007/ s11069-012-0521-x.
  • LIN F., CHEN X., YAO H. 2017. Evaluating the use of Nash-Sutcliffe efficiency coefficient in goodness-of-fit measures for daily runoff simulation with SWAT. Journal of Hydrologic Engineering. Vol. 22 p. 1–9. DOI 10.1061/(ASCE)HE.1943-5584.0001580.
  • MELSEN L.A., TEULING A.J., TORFS P.J.J.F., UIJLENHOET R., MIZUKAMI N., CLARK M.P. 2016. HESS opinions: The need for process-based evaluation of large-domain hyper resolution models. Hydrology and Earth System. Vol. 20 p. 1069–1079. DOI 10.5194/hessd-12- 13359-2015.
  • MOLNAR P., BURLANDO P. 2005. Preservation of rainfall properties in stochastic disaggregation by a simple random cascade model. Atmospheric Research. Vol. 77 p. 137–151. DOI 10.1016/j. atmosres.2004.10.024.
  • MÜLLER H., WALLNER M., FÖRSTER K. 2018. Rainfall disaggregation for hydrological modeling: is there a need for spatial consistence? Hydrology and Earth System. Vol. 22 p. 5259–5280. DOI 10.5194/ hess-22-5259-2018.
  • OLSSON J. 1998. Evaluation of a scaling cascade model for temporal rainfall disaggregation. Hydrology Earth System. Vol. 2(1) p. 19– 30. DOI 10.5194/hess-2-19-1998.
  • OLSSON J., BERNDTSSON R. 1998. Temporal rainfall disaggregation based on scaling properties. Water Science and Technology. Vol. 37 (11) p. 73–79. DOI 10.1016/S0273-1223(98)00318-7.
  • ORMSBEE L.E. 1989. Rainfall disaggregation model for continuous hydrologic modeling. Journal of Hydraulic Engineering. No. 1154 p. 507–525. DOI 10.1061/(ASCE)0733-9429(1989) 115:4(507).
  • SCHERTZER D., LOVEJOY S. 1987. Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. Journal of Geophysical Research: Atmospheres. Vol. 92(D8) p. 9693–9714. DOI 10.1029/JD092iD08p09693.
  • SOCOLOFSKY S.A., ADAMS E.E., ENTEKHABI D. 2001. Disaggregation of daily rainfall for continuous watershed modeling. Journal of Hydrologic Engineering. Vol. 6(4) p. 300–309. DOI 10.1061/ (ASCE)1084-0699(2001)6:4(300).
  • TURKES M., KOÇ T., SARIS F. 2007. Spatial and temporal analysis of the changes and trends in precipitation total and intensity series of Turkey. Geographical Sciences Journal, Turkey. Vol. 5(1) p. 57–73.
  • VENEZIANO D., BRAS R.L., NIEMANN J.D. 1996. Nonlinearity and self-similarity of rainfall in time and a stochastic model. Journal of Geophysical Research. Atmospheres. Vol. 101(D21) p. 26371– 26392. DOI 10.1029/96JD01658.
  • YOZGATLIGIL C., TURKES M. 2018. Extreme value analysis and forecasting of maximum precipitation amounts in the western Black Sea sub-region of Turkey. International Journal of Climatology. Vol. 38 p. 5447–5458. DOI 10.1002/joc.5738.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69593c14-1c17-49b4-b1ec-808f7ee66254
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.