PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics of aerosol generation and flow during inhalation for improved in vitro–in vivo correlation (IVIVC) of pulmonary medicines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy
Języki publikacji
EN
Abstrakty
EN
Chemical and process engineering offers scientific tools for solving problems in the biomedical field, including drug delivery systems. This paper presents examples of analyzing the dynamics of dispersed systems (aerosols) in medical inhalers to establish a better relationship between the test evaluation results of these devices and the actual delivery of drugs to the lungs. This relationship is referred to as in vitro-in vivo correlation (IVIVC). It has been shown that in dry powder inhalers (DPls), the aerosolization process and drug release times are determined by the inhalation profile produced by the patient. It has also been shown that inspiratory flow affects the size distribution of aerosols generated in other inhalation devices (vibrating mesh nebulizers, VMNs), which is due to the evaporation of droplets after the aerosol is mixed witha dditional air taken in by the patient. The effects demonstrated in this work are overlooked in standard inhaler testing methods, leading to inaccurate information about the health benefits of aerosol therapy, thus limiting the development of improved drug delivery systems.
Rocznik
Strony
art. no. e39
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Ari A., 2014. Jet, ultrasonic, and mesh nebulizers: an evaluation of nebulizers for better clinical outcomes. Eurasian J. Pulmonol., 16, 1–7. DOI: 10.5152/ejp.2014.00087.
  • 2. Azouza W., Chrystyn H., 2012. Clarifying the dilemmas about inhalation techniques for dry powder inhalers: integrating science with clinical practice. Prim. Care Respir. J. , 21, 208–213. DOI: 10.4104/pcrj.2012.00010.
  • 3. Buttini F., Rozou S., Rossi A., Zoumpliou V., Rekkas D.M., 2018. The application of Quality by Design framework in the pharmaceutical development of dry powder inhalers. Eur. J. Pharm. Sci., 113, 64–76. DOI: 10.1016/j.ejps.2017.10.042.
  • 4. Colthorpe P., Voshaar T., Kieckbusch T., Cuoghi E., Jauernig J., 2013. Delivery characteristics of a low-resistance dry-powder inhaler used to deliver the long-acting muscarinic antagonist glycopyrronium. J. Drug Assess., 2, 11–16. DOI: 10.3109/2155 6660.2013.766197.
  • 5. Corcoran T.E., Shortall B.P., Kim I.K., Meza M.P., Chigier N., 2003. Aerosol drug delivery using heliox and nebulizer reservoirs: results from an MRI-based pediatric model. J. Aerosol Med. Pulm. Drug Delivery, 16, 263–271. DOI: 10.1089/08942 6803769017631.
  • 6. Delvadia R.R., Longest P. W., Byron P.R., 2012. In vitro tests for aerosol deposition. I: scaling a physical model of the upper airways to predict drug deposition variation in normal humans. J. Aerosol Med. Pulm. Drug Delivery, 25, 32–40. DOI: 10.1089/jamp.2011.0905.
  • 7. Delvadia R., Hindle M., Worth Longest P., Byron P. R., 2013. In vitro tests for aerosol deposition II: IVIVCs for different dry powder inhalers in normal adults. J. Aerosol Med. Pulm. Drug Delivery, 26, 138–144. DOI: 10.1089/jamp.2012.0975.
  • 8. Dorosz A., Penconek A., Moskal A., 2016. In vitro study on the aerosol emitted from the DPI inhaler under two unsteady inhalation profiles. J. Aerosol Sci., 101, 104–117. DOI: 10.1016/j.jaerosci.2016.07.014.
  • 9. Dorosz A., Żaczek M., Moskal A., 2021. Dynamics of aerosol generation and release – dry powder inhaler performance considerations. J. Aerosol Sci., 151, 105673. DOI: 10.1016/j.jaerosci.2020.105673.
  • 10. EDQM, 2021. Chapter 2.9.18. Preparations for inhalation: Aerodynamic assessment of fine particles, In: European Directorate for the Quality of Medicines and HealthCare (EDQM), European Pharmacopeia. Published in accordance with the Convention on the Elaboration of a European Pharmacopoeia (European Treaty Series no. 50). 10th edition, Council of Europe, European Directorate for the Quality of Medicines and Healthcare, Strasbourg, 347–360.
  • 11. Gac J., Sosnowski T.R., Gradoń L., 2008. Turbulent flow energy for aerosolization of powder particles. J. Aerosol Sci., 39, 113– 126. DOI: 10.1016/j.jaerosci.2007.10.006.
  • 12. Hatley R. H. M., Byrne S. M., 2017. Variability in delivered dose and respirable delivered dose from nebulizers: are current regulatory testing guidelines sufficient to produce meaningful information? Med. Devices: Evidence Res., 10, 17–28. DOI: 10.2147/MDER.S125104.
  • 13. Longest P. W., Son Y.-J., Holbrook L., Hindle M., 2013. Aerodynamic factors responsible for the deaggregation of carrier-free drug powders to form micrometer and submicrometer aerosols. Pharm. Res., 30, 1608–1627. DOI: 10.1007/s11095-013-1001-z.
  • 14. Marriott C., MacRitchie H.B., Zeng X.-M., Martin G.P., 2006. Development of a laser diffraction method for the determination of the particle size of aerosolized powder formulations. Int. J. Pharm., 326, 39–49. DOI: 10.1016/j.ijpharm.2006.07.021.
  • 15. Mitchell J.P., Carter I., Christopher J.D., Copley M., Doub W.H., Goodey A., Gruenloh C.J., Larson B.B., Lyapustina S., Patel R.B., Stein S.W., Suman J.D., 2023. Good practices for the laboratory performance testing of aqueous oral inhaled products (OIPs): an assessment from the international pharmaceutical aerosol consortium on regulation and science (IPAC-RS). AAPS PharmSciTech, 24, 73. DOI: 10.1208/s12249-023-02528-5.
  • 16. Newman S.P., Chan H.-K., 2008. In vitro/in vivo comparisons in pulmonary drug delivery. J. Aerosol Med. Pulm. Drug Delivery, 21, 77–84. DOI: 10.1089/jamp.2007.0643
  • 17. Newman S.P., Chan H.-K., 2020. In vitro–in vivo correlations (IVIVCs) of deposition for drugs given by oral inhalation. Adv. Drug Delivery Rev., 167, 135–147. DOI: 10.1016/j.addr.2020.06.023.
  • 18. Ochowiak M., Bielecki Z., Bielecki M., Włodarczak S., Krupińska A., Matuszak M., Choiński D., Lewtak R., Pavlenko I., 2022. The D2-law of droplet evaporation when calculating the droplet evaporation process of liquid containing solid state catalyst particles. Energies, 15, 7642. DOI: 10.3390/ en15207642.
  • 19. Pirozynski M., Sosnowski T.R., 2016. Inhalation devices: from basic science to practical use, innovative vs generic products. Expert Opin. Drug Delivery, 13, 1559–1571. DOI: 10.1080/17425247.2016.1198774.
  • 20. Shekunov B.Y., Chattopadhyay P., Tong H.H.Y., Chow A.H.L., 2007. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm. Res., 24, 203–227. DOI: 10.1007/s11095-006-9146-7.
  • 21. Sosnowski T.R., 2016. Selected engineering and physicochemical aspects of systemic drug delivery by inhalation. Curr. Pharm. Des., 22, 2453–2462. DOI: 10.2174/1381612822666160128145644.
  • 22. Sosnowski T.R., 2023. Aerosols and human health – a multiscale problem. Chem. Eng. Sci., 268, 118407. DOI: 10.1016/j.ces. 2022.118407.
  • 23. Sosnowski T.R., Janeczek K., Grzywna K., Emeryk A., 2021. Mass and volume balances of nebulization processes for the determination of the expected dose of liquid medicines delivered by inhalation. Chem. Process Eng., 42, 253–261. DOI: 10.24425/cpe.2021.138929.
  • 24. Sosnowski T.R., Marczyk K., Dobrowolska L., Moskal A., 2022. Influence of selected parameters of nebulization process on the efficiency of targeted drug delivery to the lungs. In: B. Kawalec-Pietrenko (Ed.) Multiphase Flows and mechanical operations of process engineering (Przepływy wielofazowe i operacje mechaniczne Inżynierii procesowej). Publishing House of Gdańsk University of Technology, Gdańsk, 101–106 (in Polish).
  • 25. Svensson M., Berg E., Mitchell J., Sandell D., 2018. Laboratory study comparing pharmacopeial testing of nebulizers with evaluation based on Nephele mixing inlet methodology. AAPS PharmSciTech, 19, 565–572. DOI: 10.1208/s12249-017-0860-8.
  • 26. Telko M.J., Hickey A.J., 2005. Dry powder inhaler formulation. Respir. Care, 50, 1209–1227. United States Pharmacopeial Convention, 2021. Chapter 601 – Inhalation and nasal drug products: Aerosols, sprays and powders – performance quality tests, In: The United States Pharmacopeia. The National Formulary. USP 44 NF 39.
  • 27. Wei X., Hindle M., Delvadia R. R., Byron P. R., 2017. In vitro tests for aerosol deposition. v: using realistic testing to estimate variations in aerosol properties at the trachea. J. Aerosol Med. Pulm. Drug Delivery, 30, 339–348. DOI: 10.1089/jamp.2016.1349.
  • 28. Wei X., Hindle M., Kaviratna A., Huynh B. K., Delvadia R. R., Sandell D., Byron P. R., 2018. In vitro tests for aerosol deposition. VI: realistic testing with different mouth-throat models and in vitro – in vivo correlations for a dry powder inhaler, metered dose inhaler, and soft mist inhaler. J. Aerosol Med. Pulm. Drug Delivery, 31, 358–371. DOI: 10.1089/jamp.2018.1454.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-695908bd-b71b-4125-88ca-942aa7ed17e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.