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Abstract
In this paper a simple four-point, in terms of time, but eight-value in total, identification method has been 
developed for the second-order linear Nomoto steering model. The algorithm intrinsically uses the zigzag test 
data in that it inherited some principles of the well-known procedure for the first-order model, from which 
it is essentially derived. The performance evaluation was then conducted with both simulated and real data. 
However, the results of these early, unprecedented efforts are far from satisfactory. Some potential sources of 
difficulties have been discussed. This calls for further research and improvement in order to provide a practical 
application of the method.

Introduction

The identification of ship steering dynamic mod-
els has long been of interest to naval architects (of 
hydrodynamic expertise) and ship control engi-
neers since the early 20th century, always aiming 
to improve the performance of a ship. After intro-
ducing ship simulators to support nautical studies, 
waterway and harbour design, and operator training, 
a new challenging field of application has emerged. 
This field, that also provides some feedback towards 
ship design itself, covers all the matters related to 
developing mathematical models of ship manoeu-
vring for full-mission simulators. These ship models, 
with multiple degrees-of-freedom, and of strongly 
nonlinear, four-quadrant, and lookup-table type, are 
imposing new demands in terms of their input data 
quality and range.

The linear steering models are by far most-
ly associated with pure yaw motion. Traditionally 
or colloquially, they have been referred to as the 
Nomoto models. They were primarily developed 
to analyse ships course-keeping ability during ship 
design and to apply some control laws to the ship’s 

autopilots. They are a simple and analytical solution, 
with a sound interpretation and some identification 
procedures. The linear models also seem to function 
well in determining (identifying or calibrating) some 
regions of the more sophisticated, aforementioned 
full-mission manoeuvring models.

The existing linear steering models almost entire-
ly fall into two categories: first- and second-order 
models. They consist of two- and four-parameter 
structures, accordingly. The first-order model rel-
atively dominates in scientific, engineering, and 
practical interests. However, only the second-or-
der model, as it possesses the much better or even 
stricter hydrodynamic background (derivation), can 
be used for the purpose of tuning the full-mission 
models.

In spite of its long history, the additional motion 
‘effects’ of the second-order linear model, as com-
pared to the first-order one, are still to be discov-
ered. One of the most valuable and sufficiently in 
depth contributions to the second-order linear the-
ory belongs to Norrbin (Norrbin, 1996), which con-
tains a lot of other useful references. In the litera-
ture (Artyszuk, 2016) it was realised, against the old 
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original validation results (from the nineteen fifties), 
that the traditional reduction of second- to first-or-
der model often leads to an incorrect performance 
of the zigzag test simulation. Both overshoot angles 
and zigzag period are therein seriously affected, 
which are very sensitive to the ratio of the so-called 
T3 to T2 time constants. A quantitative insight to 
this phenomenon was undertaken in the literature 
(Artyszuk, 2017). Of course, as stated in the litera-
ture (Artyszuk, 2016), one might attempt to directly 
identify the first-order model from the zigzag test 
data using the well-established procedure (Nomoto, 
1960), but then a quite different meaning of the mod-
el’s two parameters (K and T) would be received and 
the consequences associated therewith.

This paper was aimed at improving and adapt-
ing the Nomoto approach (Nomoto, 1960) to the 
second-order model for the purpose of directly get-
ting its four parameters. The effectiveness of the 
new procedure has been thoroughly examined and 
reported. 

In the first section, the fundamentals of the 
first-order model identification from the zigzag test 
have been considered, in which the latter test type 
played a vital role. Some features of this algorithm 
have also been discussed therein. Subsequently, 
the procedure for the second-order model has been 
developed. In the next two sections, the perfor-
mance of is the model was tested (on simulated, 
as well as on full scale trial, data) and a compre-
hensive but simple sensitivity analysis of the iden-
tification of potential errors in the input data was 
carried out.

Classical approach to the first-order 
Nomoto model identification from the 
zigzag test

The first-order linear model, in fully dimension-
less form (thus directly applicable to any ship’s 
length and speed with the same parameters, if the 
geometric similitude is valid,), reads:
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where:
T	 –	 dimensionless distance constant (representing 

inertia);
K	 –	 dimensionless gain constant;
s'	 –	 dimensionless (instantaneous) distance;
ω'z	 –	 dimensionless yaw velocity;
δ	 –	 helm (rudder) angle, as control variable;
s	 –	 absolute distance travelled;
t	 –	 absolute time elapsed;
v	 –	 ship’s speed;
L	 –	 ship’s length;
tL	 –	 time taken to travel 1L;
ωz	 –	 yaw velocity;
ψ	 –	 heading;
ε'z	 –	 dimensionless yaw acceleration (mentioned 

here as to be further used).
The dimensionless distance constant T and 

dimensionless distance s’ above can also be alter-
natively referred to as the dimensionless time con-
stant (also the often used term and the origin for the 
symbol ‘T’) and dimensionless time, accordingly. 
Although they have no units, they really express the 
distance (of either aspect) in units of ship length (L), 
or the time in units of the time taken to travel one 
ship’s length.

Assuming the zero initial conditions of the yaw 
velocity and heading, as standard for the zigzag test, 
i.e. ω'z(0) = ψ(0) = 0, after the both-sided integration 
from 0 to arbitrary s’ equation (1) yields:
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Marking the right-hand side integral in (5), which 
is easily analytically computable for the usual trap-
ezoidal rudder steering (of finite, constant-speed 
deflection), as:
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one gets:
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The classical method of Nomoto (Nomoto, 1960) 
uses two special points from the zigzag record to 
also arrive at the two model parameters T and K in 
(7). These correspond to the abscissas of the first 
overshoot angle and the first zero-crossing heading 
(see Figure 1 – for an example of 10°/10° zigzag, 
points A and B) as follows:
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The model parameters are then simply calculated 
stepwise according to:
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which basically constitute the solution of a set of 
two linear equations based on (7). Note that it is 
really necessary to substitute herein two points of 
both the heading and the yaw velocity curve, thus 
leading in total to four points. However, they origi-
nate from only two distance instants (cross-sections 
of the zigzag full record, see Figure 1).

Of course, arbitrary pairs of these ‘dual-type’ 
points, not only the adjoining ones as common-
ly used, can be applied in the same way, without 
complicating the computation procedure at all. The 
integration mentioned just extends them to multi-
ple half-cycles. Since the half-cycles of the zigzag 
are often not ‘comparable’ to or ‘deducible’ from 
each other in the light of the information carried, 
they may lead to essentially different identification 
results. A reason for this may lie in various nonlinear 
or higher-order linear effects, and in some inherent 
errors. This is why an average of the identification 
results originating from the different zigzag inter-
vals is usually undertaken (usually up to a maxi-
mum of the first three half-cycles). However, strictly 
speaking, such an ‘identification’, even for a single 
half-cycle, looks more like a very specific first-or-
der linear approximation (linearization) of the ship’s 

real behaviour, which more or less adequately fits 
this simple model (1).

It shall be emphasised here that the yaw angular 
velocity ω'z, as shown in Figure 1 (yellow-marked) 
and used in (7) or (11), is often neither recorded in 
shipyard zigzag trials, nor reported. Far more signif-
icant, the same lack of measurement data exists with 
regard to the derivative of the yaw velocity, ε'z, that 
is also presented in Figure 1 (cyan-coloured). In such 
a situation, obtaining the yaw velocity for the model 
identification, expressed by (10) and (11), requires 
projecting a tangent line to the heading curve at the 
point of concern. The tangent of its slope angle indi-
cates the desired value of the yaw velocity.

For a zero-crossing heading, the yaw velocity 
is close in magnitude, but not equal, to the maxi-
mum value at each zigzag cycle, refer to Figure 1. 
Such maximum values are ‘practically’ linked to 
the counter-rudders, see e.g. the point B' in Figure 
1, and are much easier to visually assess based on 
the heading itself. As mentioned before, the count-
er-rudder abscissas are also required to compute the 
integral (6). Therefore, rather than using zero-cross-
ing points, the author by virtue of economy has sug-
gested taking a wide advantage of the counter-rudder 
points. At the counter-rudder, the heading deviation 
assumes its nominal, known value. In the case of the 
10°/10° zigzag, this equals 10° (=π/18 rad). The for-
mula (11) can then be replaced by:
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where s'CR2 is the distance from the second count-
er-rudder (point B').

The identification procedure discussed in this 
section, let us say for a dynamic model of a certain 
differential structure, takes two discrete, but special, 
points of a ship’s response in the zigzag test. This 
two-point identification may often be considered 
advantageous. However, one may attempt to engage 
more points, of various types, in order to someway 
obtain a more representative or average model, thus 
transforming the identification into a somewhat ‘con-
tinuous’ type. It is worthwhile to note that the two 
basic points refer to ‘partially’ independent dynamic 
states, consisting of a basic response variable (head-
ing) and its first derivative, which improve the struc-
tural adequacy of the identified dynamic model. The 
structural adequacy might be missing if, in contrast, 
someone would attempt to identify the model, e.g. 
treating it as a black box, with the heading alone.
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Figure 1. Definition of the basic zigzag points for 1st-order 
identification
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Proposal for the second-order model 
identification

In the dimensionless form, the aforementioned 
second-order linear Nomoto model appears as:
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where:
T1, T2	–	 dimensionless distance constants (due to 

symmetry T1 > T2 is commonly assumed);
T3	 –	 dimensionless distance constant (as appears 

in the exciting term on the right-hand side).
Integrating (13), analogically as done before with 

the first-order model, one obtains:
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which essentially is a linear equation with four 
unknowns (in terms of the model parameters).

Compared to the first-order case, equation (15) 
now requires the provision of the three state variables 
lying at four different distances to define a set of four 
linear equations. Obviously, the distance cross-sec-
tions of the zigzag record may not be arbitrary, oth-
erwise the motion data could be correlated with each 
other and prevent the solution. It seems that this con-
dition is met by the natural cross-sections of inter-
est as drawn in Figure 2 with ‘#’. However, this is 

not considered to be the best choice, but is believed 
to be sufficient in view of the present preliminary 
investigation.

Let us redefine the unknowns:
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Then, in matrix form, this finally reads:
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where the subscripts of the left- and right-hand side 
coefficients indicate the values at four arbitrarily 
selected distance abscissas, and for the reference 
lines per Figure 2, these indices can be rewritten as:

	 ‘#1’ – ‘CR1’,   ‘#2’ – ‘OS1’,  
	 ‘#3’ – ‘CR2’,   ‘#4’ – ‘OS2’

to directly show their correspondence with the suc-
cessively occurring counter-rudders (‘CR’) and 
overshoot angles (‘OS’). In this special case, for the 
10°/10° zigzag test, one gets:
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The moment of the first counter-rudder (CR1) in 
the 10°/10° zigzag is very important since it defines 
the IMO initial turning ability.

Let us introduce the rudder steering distance s'R 
(for the rudder trapezoidal steering) as the distance 
covered by the ship if the rudder changes from amid-
ships to its nominal angle δ0. This is expressed by:
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In the present work there has been assumed, 
unless explicitly stated, the reference case of the 
rudder speed being equal to 23°/L (i.e. a 23° rudder 
change at a ship’s distance equal to 1 L), (Artyszuk, 
2016). For the rudder nominal angle 10° in the zig-
zag of 10°/10° type this resulted in s'R = 0.4348.

 Within the periods of constant rudder angle  
(dδ/ds' = 0), delineated by particular counter-rudder 
phases, see Figure 2, the following analytics were 
valid for ease of computation in (18):

Figure 2. Definition of reference lines for 2nd-order 
identification
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The matrix equation (18) is solvable without dif-
ficulty using common linear algebra, including the 
determinant-based (Cramer’s) method that could be 
implemented even in a spreadsheet.

The inverse formulas for the model parameters, 
see (16), yield:
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In which the expression under the square root is 

positive when both T1 and T2 are positive (or both 
negative, or in some cases of opposite signs) as well.

Numerical assessment of second-order 
model identification

For verification and performance testing of 
the present algorithm, some simulated input data 
were used. First, the run of the zigzag test 10°/10°, 
according to the full second-order model (13), was 
prepared with the following parameters:

	 K = 4.89577, T1 = 10.49093, 

	 T2 = 0.29813, T3 = 0.98319	 (24)

The numerical integration scheme of (13) was 
reported in detail by Artyszuk (Artyszuk, 2017), 
where the step size 0.002 was taken for the dimen-
sionless distance s'. The resulting motion data, based 
on (24), have already been plotted in Figure 2. How-
ever, to improve the accuracy of such data, let us say, 
for a kind of ‘reverse’ identification, they were inter-
polated for every 0.001 of the independent variable. 
The discrete data as needed for importation into (18) 
have been displayed, yet rounded, in Table 1. This 
produced the results given in Table 2, where ‘%s’ 
indicate the relative change versus the original val-
ues of the parameters (24).

Although serving in the present study as just an 
example, the values of (24) were not accidental. 

They essentially come from a theoretical and empir-
ical estimation of the hull and rudder hydrodynam-
ic derivatives for a small chemical tanker. As partly 
stated before, the model and its parameters in (13), as 
figured here from (24), can be uniquely determined 
from the underlying set of two coupled first-order 
linear differential equations for the sway and yaw 
motions. Such a conversion from the hydrodynamic 
coefficients (derivatives) of this set of equations to 
the parameters of (13) has become the classic form 
of ship steering hydrodynamics.

For the next input, the 10°/10° zigzag curves 
based on the first-order model (1) simulation were 
prepared, with the similar numerical integration 
method. The following parameters were used for the 
model:

	 K = 4.89577,   T = 9.80587	 (25)

K in the above was equal to that given in (24), 
while T corresponded to the almost classical approx-
imation of the second- to the first-order model with 
the data from (24), as also reported in (Nomoto, 
1960):

	 T = T1 + T2 − T3	 (26)

The performance of the algorithm with the sup-
plied first-order linearity data was thus studied. 
According to Artyszuk (Artyszuk, 2016), this is 
equivalent to the second-order linearity when T2 = T3 
(entirely independent of T2). The latter may suggest 
that the output values for T2 and T3 in this specif-
ic ‘simplified’ linearity case could be indeterminate 
both in magnitude and sign, but equal to each other. 
The data on the input and the results obtained have 
been gathered in Tables 3 and 4, respectively.

In the third step of the validation, the algorithm 
was run with a real, yet digitised, sea trial data 
of the pure heading for a small chemical tanker 

Table 1. Simulated input to the algorithm (2nd-order)

Point  
type s' ε'z ω'z Δ ψ [rad] ψ [deg]

CR1 1.857 0.06522 0.17240 0.28617 0.17453 10
OS1 3.352 −0.09620 0 0.17701 0.32594 18.675
CR2 7.015 −0.05652 −0.25500 −0.46231 −0.17453 −10
OS2 9.305 0.08246 0 −0.21439 −0.46824 −26.828

Table 2. Output of the algorithm (2nd-order)

Parameter Value % Parameter Value %
T1 10.3747 −1.1 K 4.8537 −0.9
T2 0.2750 −7.8 T2/T1 0.0265 −6.7
T3 0.9534 −3.0 T3/T2 3.4672 5.1
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(L = 97.4 m) in the 10°/10° zigzag test. After digitis-
ing the plots of the heading, as found in the sea trial 
report, every 5 s, and applying the Bezier smoothing 
(Artyszuk, 2002), the most demanding derivatives 
of the heading – yaw velocity and acceleration – 
were analytically and automatically computed. Such 
a fitting of the primary curve of the heading to an 
analytical representation, and the subsequent ana-
lytical computation of derivatives, ensured the full 
consistency (correspondence) of both derivatives to 
the heading. The data have been presented in Figure 
3. The dots therein represent the recorded but digi-
tised heading and, for the purpose of providing some 
insight, also the numerically calculated derivatives, 
with all the errors of such a direct approach. Howev-
er, the input to the algorithm, Table 5, only consists 
of the analytical data as based on the Bezier fitting 
procedure described herein.

In validating this trial data, one should suspect 
that some biases or errors may exist in the trial report 

and in the trial itself. This might include smaller or 
larger mistakes in ‘manually’ conducting the test, 
especially with respect to the rudder timing. The 
rudder angle was not automatically recorded vs. the 
heading during the trial to allow for the consisten-
cy of data assessment. The rudder speed in this real 
example was about 33°/L (2.4 °/s at v = 7.2 m/s), that 
affected the ∆ values – see (20) to (22). The results 
of the second-order model identification in this case 
have been listed in Table 6.

Table 6. Output of the algorithm (chemical tanker)

Parameter Value % Parameter Value %
T1 n/a 1.0 K −0.194 n/a
T2 n/a n/a T2/T1 n/a n/a
T3 28.748 n/a T3/T2 n/a n/a

Some investigators reported, from a numerical 
perspective, on ill-posed problems in the case of the 
second-order model identification. For reference, 
Table 7 has provided the values of the main and the 
specific determinants involved in (18) for the three 
cases of input data.

Table 7. Values of determinants for the three cases studied

Determinant  
symbol

Simulated  
2nd-order 
(Table 1)

Simulated  
1st-order 
(Table 3)

Real 
(Table 5)

W (main) 2.584E-05 6.233E-07 −2.001E-04
Wx1 7.371E-05 −1.365E-05 −1.636E-03
Wx2 2.752E-04 4.794E-06 −1.117E-03
Wx3 −1.254E-04 −3.082E-06 −3.881E-05
Wx4 −1.196E-04 6.796E-06 1.116E-03

Sensitivity study

For the performance testing of the various 
identification algorithms, it is usual to apply some 
noise-imposed simulated data. However, such an 
approach has some limitations, in that even with 
noise (especially white-noise of zero mean value), 
the data are ‘too perfect’. In the previous section, 
only deterministically simulated data were pro-
cessed to formally verify the algorithm, see Table 

Figure 3. Digitised and smoothed sea trial data of a chemical 
tanker (dots/lines = raw/smooth data)
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Table 3. Simulated input to the algorithm (1st-order)

Point  
type s' ε'z ω'z Δ ψ [rad] ψ [deg]

CR1 2.287 0.07037 0.16247 0.36121 0.17453 10
OS1 4.719 −0.08714 0 0.08852 0.43252 24.782
CR2 8.704 −0.05804 −0.28537 −0.60700 −0.17453 −10
OS2 12.180 0.08714 0 −0.15209 −0.74676 −42.786

Table 4. Output of the algorithm (1st-order)

Parameter Value % Parameter Value %
T1 (=T) 9.9023 1.0 K 4.9447 1.0

T2 −2.2113 n/a T2/T1 −0.2233 n/a
T3 −2.2050 n/a T3/T2 0.9971 n/a

Table 5. Smoothed real input to the algorithm (chemical 
tanker)

Point  
type s' ε'z ω'z Δ ψ [rad] ψ [deg]

CR1 2 −0.00674 0.14176 0.32262 0.17453 10
OS1 3.6 −0.16082 0.00000 0.14915 0.31254 17.907
CR2 6.2 0.07979 −0.24937 −0.30464 −0.17453 −10
OS2 8 0.17470 0.00000 −0.09626 −0.43634 −25.000
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1 and 3. To show the practical and comprehensive 
performance of the algorithm, exactly the identifi-
cation of the second-order linear model with biased 
data, Table 8 has gathered the results of the sensitiv-
ity analysis. The input values of Table 1 were differ-
ent and varied up to ±10%, and have been listed in 
the left column of Table 8, and their impact on the 
resulting model parameters was examined, both in 
absolute and relative terms. Both single and multiple 
value variations were considered. This was aimed at 
shedding some light on the inherent structural rela-
tionships within the model (13) and/or within the 
identification scheme (18) itself.

The sensitivity effects of the results in Table 8 
can be studied both horizontally, with regard to each 
model parameter, and vertically, for the significance 
of each input motion data.

Discussion

The case of the simulated (fully) second-order 
zigzag input (Table 2): The reported differences ver-
sus the original values for the four model parameters, 
in a magnitude of a few percent, can be attributed 
to a certain numerical inaccuracy (due to round-
ing, truncation) within the input data provided. This 
input inaccuracy (say for an ‘ideal’ input) seems to 
be unavoidable, even if a lot of care has been exer-
cised. In real measurement conditions the input 
inaccuracy and the corresponding output inaccura-
cy of the algorithm, as one might suspect, could be 
worse. However, the two basic constants, K and T1, 
in this simulation experiment were reproduced quite 
well – with an accuracy of one percent. Table 2 has 
thus demonstrated a kind of nominal (or maximum 

Table 8. Identification results for a varied input

Variable (-s)  
being varied K % T1 % T2 % T3 % T2/T1 % T3/T2 %

reference 
(Table 2)

4.854 −0.9 10.375 −1.1 0.275 −7.8 0.953 −3.0 0.027 −6.7 3.467 5.1

ε'z|CR1 + 10% 5.612 14.6 12.479 19.0 0.394 32.2 1.164 18.4 0.032 11.1 2.955 −10.4
−10% 4.544 −7.2 9.531 −9.2 0.211 −29.3 0.847 −13.9 0.022 −22.2 4.018 21.8

ε'z|OS1 + 10% 4.846 −1.0 10.346 −1.4 0.161 −46.0 0.837 −14.9 0.016 −45.3 5.203 57.8
−10% 4.902 0.1 10.558 0.6 0.944 216.5 1.641 66.9 0.089 214.5 1.739 −47.3

ε'z|CR2 + 10% 4.647 −5.1 9.758 −7.0 0.235 −21.3 0.884 −10.1 0.024 −15.4 3.767 14.2
−10% 5.196 6.1 11.404 8.7 0.332 11.3 1.056 7.4 0.029 2.4 3.183 −3.5

ε'z|OS2 + 10% 4.553 −7.0 9.721 −7.3 0.524 75.7 1.220 24.1 0.054 89.6 2.330 −29.4
−10% 4.971 1.5 10.621 1.2 0.187 −37.4 0.858 −12.7 0.018 −38.2 4.600 39.5

ω'z|CR1 + 10% −17.402 −455.5 1.038 −90.1 −55.613 −1.9E+4 2.950 200.1 −53.568 −1.9E+5 −0.053 −101.6
+5% 10.250 109.4 25.783 145.8 0.680 128.2 1.775 80.6 0.026 −7.1 2.609 −20.9
−10% 2.875 −41.3 5.327 −49.2 −0.476 −259.5 −0.121 −112.3 −0.089 −414.2 0.254 −92.3
−5% 3.494 −28.6 6.791 −35.3 −0.125 −141.9 0.346 −64.8 −0.018 −164.7 −2.772 −184.1

ω'z|CR2 + 10% 2.961 −39.5 5.092 −51.5 −0.451 −251.4 −0.044 −104.5 −0.089 −412.0 0.098 −97.0
+5% 3.536 −27.8 6.576 −37.3 −0.112 −137.5 0.371 −62.2 −0.017 −159.8 −3.320 −200.7
−10% −9.862 −301.4 1.003 −90.4 −37.087 −1.3E+4 3.283 233.9 −36.967 −1.3E+5 −0.089 −102.7
−5% 11.015 125.0 29.554 181.7 0.664 122.8 1.827 85.8 0.022 −20.9 2.751 −16.6

ψ|OS1 + 10% 4.870 −0.5 10.434 −0.5 0.505 69.4 1.189 20.9 0.048 70.4 2.354 −28.6
−10% 4.837 −1.2 10.318 −1.6 0.042 −85.9 0.716 −27.2 0.004 −85.6 17.007 415.7

ψ|OS2 + 10% 5.189 6.0 11.069 5.5 0.032 −89.2 0.692 −29.6 0.003 −89.8 21.537 553.1
−10% 4.519 −7.7 9.643 −8.1 0.555 86.1 1.253 27.5 0.058 102.4 2.259 −31.5

all 8 {ε'z, ω'z, ψ}+10% 5.205 6.3 10.106 −3.7 0.250 −16.3 0.913 −7.1 0.025 −13.1 3.660 11.0
−10% 4.502 −8.0 10.705 2.0 0.304 2.1 1.000 1.7 0.028 0.0 3.286 −0.4

all 4 {ε'z} +10% 4.854 −0.9 10.400 −0.9 0.249 −16.4 0.953 −3.0 0.024 −15.6 3.823 15.9
−10% 4.854 −0.9 10.343 −1.4 0.306 2.8 0.953 −3.0 0.030 4.3 3.111 −5.7

all 6 {ε'z, ω'z} +10% 4.854 −0.9 9.406 −10.3 0.276 −7.5 0.953 −3.0 0.029 3.1 3.458 4.8
−10% 4.854 −0.9 11.559 10.2 0.274 −8.0 0.953 −3.0 0.024 −16.5 3.477 5.4

all 2 {ω'z} +10% 4.854 −0.9 9.377 −10.6 0.304 2.0 0.953 −3.0 0.032 14.2 3.134 −5.0
−10% 4.854 −0.9 11.587 10.4 0.246 −17.4 0.953 −3.0 0.021 −25.2 3.872 17.4

all 4 {ω'z, ψ} +10% 5.205 6.3 10.080 −3.9 0.275 −7.7 0.913 −7.1 0.027 −3.9 3.319 0.6
−10% 4.502 −8.0 10.736 2.3 0.273 −8.4 1.000 1.7 0.025 −10.5 3.661 11.0
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achievable) accuracy for the algorithm that has been 
developed. The fact that all the received values were 
a little lower than the original ones (negative sign of 
differences) was not investigated.

The case of the simulated first-order zigzag input 
(Table 4): The achieved accuracy of both first-order 
model parameters, K and T (= T1), also tended to be 
within one percent. However, as compared to the 
previous case of the second-order input, the identi-
fied values here were higher than the original val-
ues. Whether a rule or coincidence, this problem was 
not undertaken in the present research. The sign and 
magnitude of the additionally determined second-or-
der model specific constants, T2 and T3, were insig-
nificant (likely to be accidental) – see the paragraph 
directly following (26). What is important is that 
both constants were close to each other as expected, 
although their negative sign and rather high value 
might or should call for some future investigation. 

The case of the real zigzag input (Table 6). It real-
ly must be admitted that the identification for the real 
chemical tanker failed – K is very low (unrealisti-
cally so) and negative (like a directionally unstable 
ship). In addition, no T1 and T2 were found due to 
a negative value under the square roots in (23), and 
T3 was exaggerated too much. The problem at least 
likely lay in the wrong signs of the input yaw accel-
erations at the counter-rudders, which were chang-
ing too rapidly (with sign) at these points – compare 
qualitatively, for ε’z, Figure 3 to the ‘theoretical’ Fig-
ure 2, or Table 5 to Table 1. Also, some other inher-
ent biases due to the smoothing procedure adopted 
from Artyszuk (Artyszuk, 2002) may additionally 
be further blamed for the failure of the identifica-
tion algorithm. However, this smoothing method 
was originally developed for another purpose and 
thus may need refining in the context of the present 
research. There obviously could be another problem 
with this real example, of a hydrodynamic nature, as 
relating to the ship’s nonlinear behaviour. However, 
this is out of the scope of the present work.

Sensitivity analysis (Table 8). Methodically (or 
mathematically), the sensitivity to one or all vari-
ables, at least partly, depends on the chosen refer-
ence point, and cannot always be generalized. How-
ever, some interesting rough findings can be made 
from Table 8, a detailed analysis of which has been 
postponed for the future.

First of all, the influence is essentially not sym-
metrical against an increase/decrease of particular 
variable (-s). Such behaviour has often been forgot-
ten or overlooked in other sensitivity studies on dif-
ferent subjects.

With regard to the significance of particular input 
data, the largest effect was surprisingly observed 
within the yaw velocity ω'z variation (corresponding 
to the potential errors in the real yaw velocity). The 
model parameters that were then determined were 
losing a reasonable, physical meaning – being too 
high in absolute value and/or of unacceptable sign. 
A very significant effect, but smaller, was also pro-
duced by the yaw acceleration (ε'z) at the first count-
er-rudder, as associated with the first heading devia-
tion of 10°. The other yaw accelerations, as well as 
the headings, had similar yet much lesser effects if 
compared to the previous cases.

The sensitivities of K and T1 were close to each 
other and essentially lower than those found for T2 
and T3 (or for their relative measures in terms of T2/
T1 and T3/T2).

One may of course wonder how the identified 
model parameters with such ‘fouled/varied’ input 
data affect the simulation of the zigzag manoeuvre 
against the reference run. The issue of such a back-
ward simulation, however, has not been raised in 
present investigations.

The algorithm developed in this paper is univer-
sal. It worked well for both the first- and second-or-
der zigzag performance, at least for a simulated input. 
The ‘type’ of zigzag is of course unknown a priori but 
has been evidenced though the type of output.

It must be strongly emphasised here that the 
first-order procedure of Nomoto (Nomoto, 1960) 
is less sensitive to real input data, and seems to be 
more robust. It only takes heading and its first deriv-
ative (yaw velocity) into account. However, this 
procedure returns, by fitting, the first-order approxi-
mation (model) even for an essentially second-order 
behaviour. It can be said that this is done by forcing 
T2 = T3. As such, the resulting K and T values by the 
Nomoto (Nomoto, 1960) procedure can often and 
significantly lose physical (hydrodynamic) mean-
ing, as reported by Artyszuk (Artyszuk, 2016) and 
mentioned in the introduction section of this paper. 
In other words, such a first-order model mathemat-
ically fits the kinematics of the zigzag well, but its 
parameters are partially useless. Especially if one 
attempts to somehow reconstruct the steering hydro-
dynamics as expressed by the set of coupled first-or-
der linear equations.

For the reader’s reference, the Nomoto (Nomoto, 
1960) procedure applied to the second-order zigzag 
behaviour with the data of (24), plotted in Figure 2, 
gave K = 2.06 and T = 3.35 instead of being close to 
4.90 and 10.49 (= T1), respectively, as of (24). This 
came from the author’s previous paper (Artyszuk, 
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2016). This is why the first-order procedure was not 
applied to the real data of Figure 3, which, by defi-
nition, always works, but might return an inadequate 
output, very similar to this example.

Conclusions

In the present study a problem of a simple iden-
tification has been formulated with respect to the 
second-order linear Nomoto model and the zigzag 
test, and solved analytically. This is a natural exten-
sion, which has not been challenged so far and thus 
is partly new, to the well-known solution for the 
first-order model. The approach essentially uses the 
heading and its two derivatives at the four consecu-
tive moments of applying either counter-rudder or 
reaching overshoot angles. Those points are also 
well disposed over the zigzag record.

The conducted sensitivity tests revealed a huge 
vulnerability of the identified four parameters of the 
second-order model to rather small (of order 10%) 
excursions from the input motion data. The problem 
probably lies more within the model than in the iden-
tification procedure itself. Specific to the latter are 
i.e. the number and location of the zigzag moments 
as selected for the input.

In detail, perhaps the second-order model is 
either very or too accurate, particularly in terms 
of simulating the derivatives of the heading and at 
least in the context of the zigzag, which is hardly 
noticeable if someone solely and roughly looks at 
the heading performance. This must impose some 
special requirements on the accuracy and adequacy 
of the input data. The adequacy is related to whether 
the ship being identified (or the input supplied) real-
ly exhibits linear behaviour. Otherwise, with nonlin-
earity, some unexpected or exaggerated results can 
be produced.

On the other hand, in some aspects, the identi-
fication algorithm developed can also be trouble-
some and contribute to these problems. This algo-
rithm relies on the minimum number of data points, 
to just simply render the solution, and essentially 
belongs to the interpolation class, not to the approx-
imation class. In the former, the model (its param-
eters) is being truly forced to ‘hang’ on certain dis-
crete data points rather than to approximate them. 
In contrast, within the multiple- or continuous-point 
approximation, the model should be less prone to 
the random input errors or biases and thus be more 
stable.

Additional future efforts are welcome in both 
of these aspects (the model and the identification 
procedure) in order to break down and resolve this 
problematic behaviour. To some extent, as is well-
known, the inconvenience with the second-order 
model identification has also been reported in the 
literature. But it is not exactly of the same sort of 
problems as has been encountered throughout the 
present investigations.

A validity of linearity in the steering perfor-
mance based on the zigzag test, of the first- or sec-
ond-order, is also a good subject for future research. 
It shall be subject to revision because the published 
results available, particularly supporting the first-or-
der model superiority, mostly relate to older ship 
designs. This probably would involve much more 
advanced measurement instrumentation, especially 
consisting of accurate inertial sensors for angular 
velocity and acceleration, and/or data processing 
techniques. The latter may also cover some sophis-
ticated numerical differentiation (and/or smoothing) 
methods, when e.g. the pure heading is only being 
focused on.
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