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Abstract. Mathematical models of two electromechanical

systems consisting of a DC motor and an AC motor were

built. To determine the moment of active (driving) torque

as a function of angular velocity, Kirchhoff voltage

equations were used in the system with the DC motor. In

the system with the alternating current, equations

determining the components of the stator and rotor vectors

and the voltage equation were used. Both models include

susceptibility and suppression of motion transmission

systems. It was assumed that the speed control is carried

out according to the preset traffic pattern in the feedback

system in relation to position, speed and acceleration. The

Runge-Kutta method was used to solve the equations. The

author’s own simulation program was written, which

allowed to determine the time of displacement, speed and

acceleration of the output shaft depending on the

resistance of motion and the adopted method of rotational

speed control. Calculation examples have been provided.

Conclusions and suggestions resulting from the simulation

have been formulated.

Key words: DC motor, AC motor, dynamics, drive

system, theoretical model, motion simulation.

INTRODUCTION

Nowadays, it is difficult to imagine life without

electrical devices. Micromotors are produced with the

power of several dozen milliwatts and motors with the

capacity of several gigawatts. Low power electric drive is

used in everyday and household appliances, medium and

high power in industrial equipment (e.g. in cement plants)

and transport equipment (e.g. in locomotives, trams,

trolleybuses). Thanks to the development of new

technologies for the production of electric batteries,

electric motors are also used to drive vehicles without

access to the power grid [5, 7, 10, 19, 24]. It is, among

others, a way to reduce the consumption of liquid fuels

and carbon dioxide emissions [20, 22].

DC motors are used to drive low and medium power

devices. A distinction is made between series motors in

which the stator and stator windings are connected in

series. They are often called universal motors because

they work on DC as well as on alternating current. Motors

in which windings are connected in parallel are called

bypass motors. Due to the "rigid" torque characteristics,

they are used in devices that require precise speed control

(e.g. in manipulators). To drive small devices, permanent

magnet motors are used, often equipped with an electronic

commutator, which does not cause generating

electromagnetic interference. Speed control in DC motors

is only possible by changing the value of the supply

voltage.

A separate chapter for the development of electric

drives are AC motors. In 1889, Pole Michał Doliwo-

Dobrowolski, electrical engineer and inventor, pioneer of

three-phase current technology, constructed a three-phase

induction motor (asynchronous) with a 80W squared

impeller [9]. The construction of the invented engine was

improved in the following years. The shape of the rotor

cage was modified. This resulted in the two-well cage and

deep groove rotors.

So-called ring motors with a three-phase armature

winding led out through three slip rings by means of

brackets adhering to the rings. When the three pins were

shorted, the rotor obtained the maximum speed. The

reduction of the current and speed consumed was obtained

by increasing the resistance of the armature windings by
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inserting resistors into its circuit or by using a chopper

(current chopper). In addition to the regulation of the

additional resistance value, a cascade control system

based on supplying the armature from an external power

supply was used [8]. Ring motors are less and less used

due to the wear of brushes.

Asynchronous cage motor has a simpler structure than

a DC motor and less than about 30% mass at the same

power, it is reliable, resistant to overload and works

quietly. Thanks to its advantages, the cage engine is also

commonly used to drive machines and devices for

everyday use. 

The use of DC caged asynchronous motors from

accumulators or traction requires the use of so-called

inverters - advanced converters (converters) of direct

current into three-phase alternating current. Three-phase

asynchronous cage motors powered by the inverter are

currently used in traction vehicles (locomotives, trams,

trolleybuses) and vehicles equipped with lithium-ion

batteries (passenger cars, trucks, buses and even

motorcycles) [3, 21, 23]. Changing the cage motor speed

is only possible by changing the frequency of the stator

supply voltage. In speed control systems, power

transistors, triacs and microprocessors are used. In order

to avoid mechanical and electrical overloads, starting and

braking of the motor is often done according to the set

"motion pattern" defining the time courses of

displacement, velocity and acceleration.

For modeling and computer simulation of electric

drives and power systems, mathematical models [1, 16,

18] and commercial programs are used, among others

MatLab Simulink [6, 12, 13, 15] and others [2]. There are

also used methods of artificial intelligence and fuzzy

models [11, 14, 25] and even statistical programs [4].

The work presents calculation algorithms for drive

systems with a DC bypass motor and an AC motor. In the

mathematical models of dynamics of drive systems,

dynamic characteristics of engines with control were taken

into account. The presented models, despite the existing

differences, are similar modules that can be used

interchangeably depending on the type of drive selected.

The author’s simulation program was created that links

geometrical parameters (gear ratio), kinematic

(displacement, speed, acceleration), dynamic (the course

of active and passive forces in the drive system) and

electrical (voltage, current, frequency of current). With

the use of the software, times mileages of the kinematic

courses of output shaft drive systems for a sinusoidal

"motion pattern" were determined.

DEFINING THE TASK OF A DRIVING SYSTEM

MODELING

Exemplary drive systems are shown in Figure 1. Drive

sets consist of motors (2) − DC, AC. The motors are supplied

via the regulator (1) − of the controlled rectifier and the

inverter. Rotor speed is controlled by changing the supply

voltage, the frequency of the supply voltage u
z
. The

displacement Θ
1
 is measured by the sensor (6), while the

speed is measured by the tacho electric generator (7). The

angular acceleration signal is obtained from the angular

velocity measurement in subsequent time intervals. Signals of

measured values are compared with setpoint signals from the

"motion pattern" generator (4). In the controller (5), the error

signals are amplified and converted into control signals of the

regulator. The driving torque M
n
 is transferred by the gearbox

(3) with the i
p
 gear ratio and then via a flexible shaft with

torsional elastic coefficients k and damping l to the driven

device at the moment of load Mo.

a

b

Fig. 1. Driving systems, a − of DC motor, b − of AC

motor

The mathematical model of the DC motor assembly

was constructed using Kirchhoff voltage equations. In the

model of the AC motor, the equations of the stator and

armature streams were used. The susceptibility and

damping of the motion transmission system's vibrations,

feedback control in relation to position, speed and

acceleration were taken into account. Mechanical and
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magnetic hysteresis, influence of eddy currents and

magnetic saturation were omitted. It was assumed that the

three-phase machine is symmetrical and the voltage

waveforms are sinusoidal.

MATHEMATICAL MODEL OF DRIVING SYSTEMS

For a DC motor, the Kirchhoff equation for the

armature circuit has the form [17]:
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where: c − motor constant [V·s], ia(t) − armature current
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voltage [V], 
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(t) − angular displacement of the output shaft [rad].

Assuming the load of the output shaft of the system

Mo(t), after the system is reduced to its axis, the equation

of the balance of the second mass of inertia J2 for a system

with two degrees of freedom has the form:
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The above equation is valid when the value of the

moment of inertia J
2
 is unchanged over time.

After making minor transformations and entering the

coordinates of the state:
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we get the equations of motion in the coordinates of the
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The initial conditions were accepted:
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Mst(t) − load torque at start-up [N·m], 
0
(t) − initial

angular displacement [rad].

For an AC motor, the equations determining the

constituent values of stator and armature vectors are [17]:
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The electric torque of the engine is expressed by the 

formula:
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where:
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components of the armature current vector in the

directions  and  [A], i
s, is − components of the stator

current vector in the directions α and β [A], k
s
, k

r
− stator

and armature coupling factors, L
m

− stator and armature

inductance [H], L
s
, L
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− stator circuits inductance,

armature [H], m
s
, m
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− stator and armature damping

coefficients [·H
-1

], p − number of pole pairs, R
s
, R
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resistance of stator and armature circuits [], U
m

−

amplitude of stator voltage supply [V],  − resultant

dispersion factor (for asynchronous machines is about

1/15), 
sn
 − pulsation stator power supply [s

-1

].

The mechanical part of the drive unit is identical to

that of the DC motor drive and is described by equations

(3) ÷ (6).

After making minor transformations and entering the

coordinates of the state:
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Any numerical integration method with constant or

variable integration step can be used to solve equations.

MATHEMATICAL MODEL 

OF THE REGULATION SYSTEM

The development of a universal mathematical model

of the control system is not possible due to the variety of

solutions. Very simple mathematical models of control

systems for DC and AC motors will be presented. Taking

into account feedback control with respect to position,

speed and accelerations, setting quantities are defined by

the following relations:
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where: Kj, K, Ke − coefficients of amplification of

position, velocity, acceleration, Kj, K, Ke − setting

variables, )( ),( ),(
000 nnn
ttt 

˙̇˙
− set, reference

values of kinematic parameters in the time step n.
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In the current sampling time step, the value of the

control parameter τrn is calculated as the difference

between the parameter value from the previous step and

the sum of the control values:

)(
1 

 
rnrn

. (16)

The parameter of the drive regulation with the DC

bypass motor, in the time step n will be the armature

voltage ua (then rn = uan) or indirectly the angle of

thyristor control
g

 (then rn = gn

 ) and then the supply

voltage [8]
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where: m − number of phases, uz − effective value of the

alternating voltage supplying the armature [V],
g


−

thyristor extinguishing angle [rad].

The change of the kinematic parameters of the drive

with the AC motor is obtained by changing the frequency

f of the stator supply voltage (then rn = fn).

All the dependences discussed in this chapter, after

passing the description to the coordinates of the state,

constitute a complete mathematical model of drive

systems together with control systems, adapted to

numerical integration.

NUMBERS EXAMPLES

The motion of drive units was simulated. A sinusoidal

speed standard, a constant value of the mass moment of

inertia J2 and a time-varying load torque were assumed.

The equations of state were solved by the Runge−Kutta

method with a time step of 0.001 s. The following

parameter values were adopted: − for a sinusoidal speed

standard:

0p = 1.40 rad, 0k = 2.49 rad, (d0/dt)max = 1.2 rad·s
-1

,

(d
2

0/dt
2

)max = 4 rad·s
-2

, − load moment: Mo(t) = 300sin2

N·m, − for the mechanical system: J1 = 48 kg·m
2

, J2 = 2

kg·m
2

, k = 90000 N·m·rad
-1

, l = 500 kg·m·s
-1

, ip = 150, −

for DC motor: c = 0.442 V·s, n = 3000 rpm, La = 0.0012

H, Ra = 15.2 , m = 3, uz =120 V~, N = 1000 W, − for AC

motor: N = 1000 W, n = 1390 rpm, uz = 220 V, f = 50 Hz,

p = 2, Lm = 0.1695 H, ms = 19 ·H
-1

, mr = 22 ·H
-1

, ks =

0.957, kr = 0.906.

Figure 2 presents the motions of displacements,

velocities and accelerations of the output shaft given by

the "motion pattern" and obtained from the simulation.

a

b

Fig. 2. Time related courses of kinematic parameters. a −

of DC motor, b − of AC motor

CONCLUSIONS

The proposed mathematical models allow the analysis

and selection of drive parameters, taking into account the

susceptibility and damping of drive system components. It

is possible to analyze vibration processes depending on

kinematic parameters and loads. Models are ready-made

"modules" to determine kinematic motion parameters.

Based on the simulations carried out, the following

conclusions can be drawn:
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1. The feedback control with respect to position,

velocity and acceleration allows for a satisfactory

mapping of given kinematic parameters, the one

which strongly depends on the values of the

amplification coefficients of the errors and the

sampling frequency.

2. For the assumed numerical values, the greatest

oscillations of accelerations occur in the start-up

phase, which for the tested models with a DC motor

are 8.7 rad/s
2

 and the variable one is 5.5 rad/s
2

.

3. Better control properties and less sensitivity to

changes in parameters have been observed in the

drive system with the DC motor, it is more difficult to

adjust the drive system with the AC motor.
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Abstract. The work analyzed the effect of additional 
wraps on the number of layers and thus the tightness of 
the material under protection. It was assumed that all the 
overlaps of each two consecutive wraps are the same, and 
each additional wrap causes the same increase of all the 
tabs. The mechanical properties of the film and its 
dimensions were taken into account. We have written our 
own simulation program that allows us to calculate the 
percentage of a given number of film layers on the side of 
the bale and the visualization of the distribution of layers 
in its cross-section. Calculation examples have been 
provided. Conclusions and suggestions resulting from the 
obtained simulation results have been formulated. 
Key words: baled silage, cylindrical bale, stretch film, 
tightness, mathematical model, simulation model. 
 
 

INTRODUCTION 
 

Protection of the rolled material for silage consists in 
mechanical wrapping of singles bales with a flexible film. 
The wrapping machine should provide a wrapping that 
meets the requirements of the tightness with the assumed 
number of layers of film on the entire outer surface, with 
the lowest possible use of the film. 

For wrapping, we use films with the thickness of 
approx. 25 μm and the width of 0.5 m or 0.75 m and the 
stretch ratio in the range of 50% to 70%. The following 
layers are overlapped with the 50% or 75% overlap of the 
film width [10, 18]. The use of 6 layers to a greater extent 
ensures the required tightness of the protection [13, 16, 
17], however, four layers of the film are usually sufficient 
[14, 15]. Four layers are obtained when the bale during 
the wrapping makes 1 turn against its own axis using a 
50% overlap or 0.5 turn using the 75% overlap. Impact on 
the tightness has the degree of the stretch of the film, 
which has its limitations due to the possibility of 
microcracks [4, 5, 11, 19]. Despite the tight protection 
and a high degree of compaction [7], the validity of the 
silage is determined by the storage time [8]. 

Due to the fact that the quotient of the length of the 
wrapped bale circumference and the width of the film 
reduced by the length of the overlap is rarely an integer, 
one additional wrapping is applied, which increases the 
length of the last overlap above the assumed values. 

The diameters of the bale as well as the width of the 
film have dimensions that are within a certain tolerance 
and, therefore, the number of layers may be smaller than 
the assumed one [1, 2]. Assuming the cover of the bale 
with four layers and a 50% overlap, narrow belts can be 
formed along three layers and, in an unfavorable case, 
along two layers. Similarly, when using a 75% overlap, 
three-layer belts can be created, as shown in Fig. 1. 

To prevent this, you can apply an even increase of all 
the overlaps by separating the excess created by the 
additional wrap. The improvement of tightness depending 
on the increased width of mutual overlapping of adjacent 
belts is confirmed by experimental tests [3, 6, 22]. Even 
distribution of layers also has an impact on reducing film 
consumption, which is confirmed by the results of a few 
theoretical and experimental studies [9, 12, 20, 21, 23]. 

 
a         b 

 
Fig. 1. The unfavorable arrangement of the film layers; a 
– overlap 50%, b – overlap 75% 
 

In this paper, a wrapping was proposed, in which a 
small reduction in the width of the film would not reduce 
the number of layers and thus the deterioration of the 
tightness. For this purpose, mathematical relations were 
derived, on the basis of which the authors’ own 
simulation program was developed to determine the 


