Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The work is devoted to the processes of heat and mass transfer in moving and stationary dense layers of dispersed materials. One and two-component models of heat and mass transfer in a layer with internal heat sources caused by chemical and phase transformations in the presence of submerged heat exchange processes are given. A review of the literature showed that for a layer containing heat sources, not only information on these parameters is missing, but also methods for their determination. This paper describes the theoretical basis that forms the analytical dependencies of such methods. Satisfactory qualitative and quantitative agreement between experimental and calculated data indicates that the models accurately describe the main patterns of heat transfer in a blown layer with submerged heat transfer surfaces. The research results showed that when calculating temperature fields, reliable information is needed on the heat transfer coefficients of the layer and its components.
Wydawca
Czasopismo
Rocznik
Tom
Strony
470--477
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Technical University of Kosice Faculty of Manufacturing Technologies Bayerova 1, 08001 Presov, Slovakia
autor
- Odesa State Agrarian University Department of Agricultural Engineering st. Panteleimonovskaya, 13 65012, Odesa, Ukraine
autor
- Odesa National Polytechnic University Shevchenka Ave 1, 65044 Odesa, Ukraine
autor
- Odesa State Agrarian University Department of Agricultural Engineering st. Panteleimonovskaya, 13 65012, Odesa, Ukraine
Bibliografia
- 1] Zhang, Y., Qi, X., Zhang, L. et al. “Structural characteristics and low-temperature oxidation thermodynamic proper-ties of coal and gangue in the same coal seam.” J Therm Anal Calorim, vol. 149, pp. 7717-7734, 2024.
- [2] Han, Z., Liu, Y., Wang, C. et al. “Experimental study on heat transfer efficiency of pyrotechnics enhanced by gas gener-ator.” J Therm Anal Calorim, vol. 149, pp. 12111-12126, 2024.
- [3] Panda, A., Dyadyura, K., Kokhan, O. “Increase of techno-logical indicators used in the energy industry.” MM Science Journal, pp. 7724-7730, 2024.
- [4] Panda, A., Dyadyura, K., Mokiy, A. “Nonlinear dynamics methods applications to product lifecycle management.” MM Science Journal, pp. 7325-7331, 2024.
- [5] Gaesenngwe, G., Danha, G., Mamvura, T.A., et al. “Coal structure evaluation and morphological properties that af-fect the coal usage in industries.” Discov Geosci. vol. 2, 85, 2024.
- [6] Wang, J., Liu, X. “Study on heat transfer law of moving tem-perature variable gas in thermoacoustic plate stack.” Sci Rep, vol. 14, 9486, 2024.
- [7] Dyadyura, K., Oborskyi, G., Prokopovych, I., Khamitov, V., Holubiev, M. “Optimal Management in the Operation of Complex Technical Systems.” Journal of Engineering Sci-ences, vol. 11, no. 1, B1-B9, 2024.
- [8] Krenický, T., Dyadyura, K., Dmitrishin, D., Grybniak, S., Pro-kopovich, I. “Application of methods of decentralised sys-tems in management in lean manufacturing.” Manage-ment Systems in Production Engineering, vol. 31, no. 4, pp. 427-433, 2023.
- [9] Zhang, X., Shao, Q., Liu, J., et al. “Recent Development of Heat Transfer and Fluid Flow of Supercritical CO2 in Tubes: Mechanisms and Applications.” J Therm Sci, vol. 33, pp. 2274-2298, 2024.
- [10] Golik, V.I., Klyuev, R.V., Martyushev, N.V. et al. “Mechani-cal Activation of Coal Mining and Enrichment Tailings.” Coke Chem, vol. 67, pp. 407–412, 2024.
- [11] Zi, J., Long, W., Liu, Y., et al. “Numerical simulation of heat transfer performance and convective vortex evolution in a phase change thermal storage device with dispersed heat sources.” Heat Mass Transfer, vol. 60, pp. 1613-1627, 2024.
- [12] Akulich, P.V., Slizhuk, D.S. and Akulich, A.V. “Heat and Mass Transfer in a Vibrofluidized Bed of Vegetable Mate-rials with Radiative-Convective Power Input.” J Eng Phys Thermophy, vol. 97, pp. 1808-1813, 2024.
- [13] Kumar, N., Karmakar, S., Kumar, D. et al “Energy Conver-sion through Hybrid Renewable Energy System (HRES) from Solid Waste and Its Economic Assessment.” Waste Bi-omass Valor, vol. 15, pp. 6977-6995, 2024.
- [14] Kim, H.K., Kim, T.Y., Kim, Y.H. et al. “Thermophotovoltaic performance of a porous medium combustor with exter-nal heat recovery and multiple injectors.” J Mech Sci Tech-nol, vol. 36, pp. 4315-4325, 2022.
- [15] Brich, M.A., Gorbachev, N.M., Koznacheev, I.A. et al. “As-sessment of the Possibility of Microwave Biomass Torre-faction Using the Heat of an Exothermic Decomposition Reaction.” J Eng Phys Thermophy, vol. 97, pp. 1770-1778, 2024.
- [16] Korzyuk, V.I., Rudko, Y.V. “Development of Fushchich’s Mathematical Model of Heat Transfer.” Eng Phys Thermo-phy, vol. 97, pp. 451-462, 2024.
- [17] Strizhenov, E.M., Chugaev, S.S., Shelyakin, I.D. et al. “Nu-merical modeling of heat and mass transfer in an adsorbed natural gas storage tank with monolithic active carbon during charging and discharging processes.” Heat Mass Transfer, vol. 60, pp. 1931-1944, 2024.
- [18] Askarova, A.S., Messerle, V.E., Bolegenova, S.A. et al. “In-fluence of the method of air-fuel mixture supply on the main characteristics of heat and mass transfer pro-cesses.” Thermophys. Aeromech, vol. 29, pp. 107-124, 2022.
- [19] Salikhov, V.A., Fedoseev, S.V. “Comprehensive Use of Coal and Coal Waste: Theoretical Aspects.” Coke Chem, vol. 66, pp. 247-252, 2023.
- [20] Dyadyura, K., Prokopovich, I., Khamitov, V., Sikach, T., Vershkov, O. “Application of the Dynamic Programming Method in Process Measurement Problems When As-sessing Interoperability.” Lecture Notes in Mechanical En-gineering, pp. 699-711, 2025.
- [21] I. Pandová, M. Rimár, A. Panda, et al. “A study of using nat-ural sorbent to reduce iron cations from aqueous solu-tions.” Int J Environ Res and Pub Health, vol. 17, 2020. https://doi.org/10.3390/ijerph17103686.
- [22] M. Harničárová, J. Valíček, M. Kušnerová, et al. “Study of the influence of the structural grain size on the mechanical properties of technical materials.” Materialwissenschaft und Werkstofftechnik, vol. 5, 2019. https://doi.org/10.1002/mawe.201800177.
- [23] L. Sukhodub, A. Panda, L. Sukhodub, et al. “Hydroxyapatite and zinc oxide based two-layer coating, deposited on Ti6Al4V substrate.” MM Science Journal, pp. 3494-3499, 2019. DOI: 10.17973/MMSJ.2019_12_2019030.
- [24] A. Panda, M. Prislupčák and I. Pandová. “Progressive tech-nology diagnostics and factors affecting machinability.” Applied Mechanics and Materials, vol. 616, pp. 183-190, 2014. DOI: 10.4028/www.scientific.net/AMM.616.183.
- [25] V. Nahornyi, A. Panda, J. Valíček, et al. “Method of Using the Correlation between the Surface Roughness of Metal-lic Materials and the Sound Generated during the Con-trolled Machining Process.” Materials, vol. 15, 823, 2022. https://doi.org/10.3390/ma15030823.
- [26] A. Panda, V. Nahornyi, J. Valíček, et al. “A novel method for online monitoring of surface quality and predicting tool wear conditions in machining of materials.” Int J Adv Manuf Technol, vol. 123, pp. 3599-3612. https://doi.org/10.1007/s00170-022-10391-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69544827-8ead-45c6-ab85-1ce29c89d111
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.