PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Estimating risk levels for blood pressure and thyroid hormone using artificial intelligence methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, artificial intelligence methods are designed and adopted for evaluating various risk levels of thyroid hormone and blood pressure in humans. Fuzzy Logic (FL) method is firstly exploited to provide the risk levels. Additionally, a machine learning was proposed using the Adaptive NeuronFuzzy Inference System (ANFIS) to learn and assess the risk levels by fusing a multiple-layer Neural Network (NN) with the FL. The data are collected for standard risk levels from real medical centers. The results lead to well ANFIS design based on the FL, which can generate such interesting outcomes for predicting risk levels for thyroid hormone and blood pressure. Both proposed methods of the FL and ANFIS can be exploited for medical applications.
Twórcy
  • Mustansiriyah University, Department of Electrical Engineering, College of Engineering, Mustansiriyah University, Baghdad, Iraq
  • Technical Engineering College of Mosul, Northern Technical University, Mosul, Iraq
autor
  • Technical Engineering College of Mosul, Northern Technical University, Mosul, Iraq
Bibliografia
  • [1] E. Jiffri, “Relationship between lipid profile blood and thyroid hormones in patient with type 2 diabetes mellitus,” Adv Obes Weight Manag Control, vol. 6, no. 6, pp. 178-182, 2017. [Online]. Available: https://doi.org/10.15406/aowmc.2017.06.00176.
  • [2] A. T. Azar, S. A. El-Said, and A. E. Hassanien, “Fuzzy and hard clustering analysis for thyroid disease,” Computer methods and programs in biomedicine, vol. 111, no. 1, pp. 1-16, 2013. [Online]. Available: https://doi.org/10.1016/j.cmpb.2013.01.002.
  • [3] E. Sonuc¸ et al., “Thyroid disease classification using machine learning algorithms,” in Journal of Physics: Conference Series, vol. 1963, no. 1. IOP Publishing, 2021, p. 012140. [Online]. Available: https://doi.org/10.1088/1742-6596/1963/1/012140.
  • [4] A. Amouzegar, M. Heidari, S. Gharibzadeh, L. Mehran, M. Tohidi, and F. Azizi, “The association between blood pressure and normal range thyroid function tests in a population based tehran thyroid study,” Hormone and Metabolic Research, pp. 151-156, 2015.
  • [5] H. Das, B. Naik, and H. Behera, “Medical disease analysis using neuro-fuzzy with feature extraction model for classification,” Informatics in Medicine Unlocked, vol. 18, p. 100288, 2020. [Online]. Available: https://doi.org/10.1016/j.imu.2019.100288.
  • [6] M. MAyilvaganan and K. Rajeswari, “Analysis study of fuzzy logic using blood pressure readings.”
  • [7] G. Arji, H. Ahmadi, M. Nilashi, T. A. Rashid, O. H. Ahmed, N. Aljojo, and A. Zainol, “Fuzzy logic approach for infectious disease diagnosis: A methodical evaluation, literature and classification,” Biocybernetics and biomedical engineering, vol. 39, no. 4, pp. 937-955, 2019. [Online]. Available: https://doi.org/10.1016/j.bbe.2019.09.004.
  • [8] B. S. Alyas, “Design an intelligent system for thyroid diseases diagnosis,” International Journal of Enhanced Research in Science Technology & Engineering, vol. 3, no. 4, pp. 217-229, 2014. [Online]. Available: https://www.researchgate.net/publication/333547166
  • [9] D. Sharma, G. Singh Aujla, and R. Bajaj, “Deep neuro-fuzzy approach for risk and severity prediction using recommendation systems in connected health care,” Transactions on Emerging Telecommunications Technologies, vol. 32, no. 7, p. e4159, 2021. [Online]. Available: https://doi.org/10.1002/ett.4159.
  • [10] H. Abbad Ur Rehman, C.-Y. Lin, Z. Mushtaq, and S.-F. Su, “Performance analysis of machine learning algorithms for thyroid disease,” Arabian Journal for Science and Engineering, pp. 1-13, 2021. [Online]. Available: https://doi.org/10.1007/s13369-020-05206-x.
  • [11] R. R. Yager and L. A. Zadeh, An introduction to fuzzy logic applications in intelligent systems. Springer Science & Business Media, 2012, vol. 165. [Online]. Available: https://doi.org/10.1007/978-1-4615-3640-6.
  • [12] T. J. Ross, Fuzzy logic with engineering applications. John Wiley & Sons, 2009. [Online]. Available: https://doi.org/10.1002/9781119994374.
  • [13] K. Tanaka and B. Werners, An introduction to fuzzy logic for practical applications. Springer, 1997. [Online]. Available: https://doi.org/10.1002/9781119994374.
  • [14] N. H. Phuong and V. Kreinovich, “Fuzzy logic and its applications in medicine,” International journal of medical informatics, vol. 62, no. 2-3, pp. 165-173, 2001. [Online]. Available: https://doi.org/10.1016/S1386-5056(01)00160-5.
  • [15] G. Hayward and V. Davidson, “Fuzzy logic applications,” Analyst, vol. 128, no. 11, pp. 1304-1306, 2003. [Online]. Available: https://doi.org/10.1039/B312701J.
  • [16] P. M. Larsen, “Industrial applications of fuzzy logic control,” International Journal of Man-Machine Studies, vol. 12, no. 1, pp. 3-10, 1980. [Online]. Available: https://doi.org/10.1016/S0020-7373(80)80050-2.
  • [17] C. Von Altrock, Fuzzy logic and neurofuzzy applications explained. Prentice-Hall, Inc., 1995. [Online]. Available: https://dl.acm.org/doi/abs/10.5555/201020.
  • [18] J. Harris, Fuzzy logic applications in engineering science. Springer Science & Business Media, 2005, vol. 29. [Online]. Available: https://doi.org/10.1007/1-4020-4078-4.
  • [19] G. Bojadziev and M. Bojadziev, Fuzzy sets, fuzzy logic, applications. World scientific, 1995, vol. 5. [Online]. Available: https://doi.org/10.1142/2867.
  • [20] M. Y. Al-Ridha, R. R. O. Al-Nima, and A. S. Anaz, “Adaptive neuro-fuzzy inference system for controlling a steam valve,” in 2019 IEEE 9th International Conference on System Engineering and Technology (ICSET). IEEE, 2019, pp. 156-161. [Online]. Available: https://doi.org/10.1109/ICSEngT.2019.8906307.
  • [21] S. Dhanasekaran, P. Mathiyalagan, and A. M. Rajeshwaran, “Automatic segmentation of lung tumors using adaptive neuron-fuzzy inference system,” Annals of the Romanian Society for Cell Biology, pp. 17 468-17 483, 2021. [Online]. Available: http://www.annalsofrscb.ro/index.php/journal/article/view/7648
  • [22] E. Özgan, I. Korkmaz, and M. Emiroğlu, “Adaptive neuro-fuzzy inference approach for prediction the stiffness modulus on asphalt concrete,” Advances in Engineering Software, vol. 45, no. 1, pp. 100-104, 2012. [Online]. Available: https://doi.org/10.1016/j.advengsoft.2011.09.015.
  • [23] W. Liu, “Forecasting exchange rate change between usd and jpy using dynamic adaptive neuron-fuzzy logic system,” Asia Pacific Journal of Finance and Banking Research, vol. 2, no. 2, 2008. [Online]. Available: https://ssrn.com/abstract=1536037
  • [24] I. Crismaru, A. Pantea Stoian, O. G. Bratu, M.-A. Gaman, A. M. A. Stanescu, N. Bacalbasa, and C. C. Diaconu, “Low-density lipoprotein cholesterol lowering treatment: the current approach,” Lipids in health and disease, vol. 19, pp. 1-10, 2020. [Online]. Available: https://doi.org/10.1186/s12944-020-01275-x.
  • [25] B. J. Kim, S.-H. Lee, W.-S. Ryu, B. S. Kang, C. K. Kim, and B.-W. Yoon, “Low level of low-density lipoprotein cholesterol increases hemorrhagic transformation in large artery atherothrombosis but not in cardioembolism,” Stroke, vol. 40, no. 5, pp. 1627-1632, 2009. [Online]. Available: https://doi.org/10.1161/STROKEAHA.108.539643.
  • [26] O. L. Webb, P. M. Laskarzewski, and C. J. Glueck, “Severe depression of high-density lipoprotein cholesterol levels in weight lifters and body builders by self-administered exogenous testosterone and anabolic-androgenic steroids,” Metabolism, vol. 33, no. 11, pp. 971-975, 1984. [Online]. Available: https://doi.org/10.1016/0026-0495(84)90222-1.
  • [27] M. A. Abou-Seif and A.-A. Youssef, “Evaluation of some biochemical changes in diabetic patients,” Clinica Chimica Acta, vol. 346, no. 2, pp. 161-170, 2004. [Online]. Available: https://doi.org/10.1016/j.cccn.2004.03.030.
  • [28] R. R. Al-Nima, F. S. Abdullah, and A. N. Hamoodi, “Design a technology based on the fusion of genetic algorithm, neural network and fuzzy logic,” arXiv preprint arXiv:2102.08035, 2021. [Online]. Available: https://doi.org/10.48550/arXiv.2102.08035.
  • [29] J. J. Buckley, Fuzzy probabilities: new approach and applications. Springer Science & Business Media, 2005, vol. 115. [Online]. Available: https://doi.org/10.1007/3-540-32388-0
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69534e59-112c-4893-a0b9-cedc55392519
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.