PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic Behaviour of Selective Laser Melted 316L Steel : Mechanical Properties and Microstructure Changes

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Dynamiczne zachowanie próbek ze stali 316L wytworzonych za pomocą metody SLM : właściwości mechaniczne i zmiany mikrostruktury
Języki publikacji
EN
Abstrakty
EN
316L steel specimens with three different shear zones made by SLM (Selective Laser Melting) were subjected to dynamic tests using the Split Hopkinson Pressure Bar method. The effect of high-speed deformation on changes in microstructure was analyzed. In addition, the stress-strain relationship was determined from the SHPB results. To visualize the deformation process of the specimens during the tests, a camera with a high frame rate was used. It was shown that as the plastic deformation increases, the hardness of the material increases. Microstructural analysis of dynamically loaded areas revealed numerous defects. Twinning was found to be the main deformation mechanism. Large plastic deformation and many other microstructural changes such as shear bands, cracks and martensite nucleation were also observed.
PL
Próbki ze stali 316L z trzema różnymi strefami ścinania wykonane metodą SLM (Selective Laser Melting) poddano testom dynamicznym wykorzystując do tego metodę dzielonego pręta Hopkinsona (Split Hopkinson Pressure Bar). Przeanalizowano wpływ odkształceń o dużej szybkości na zmiany w mikrostrukturze. Ponadto na podstawie wyników badań SHPB wyznaczono zależność naprężenie- odkształcenie. W celu zobrazowania procesu odkształcania próbek podczas badań zastosowano kamerę o dużej częstości klatkowania. Wykazano, że wraz ze wzrostem odkształcenia plastycznego wzrasta twardość materiału. Analiza mikrostrukturalna obszarów obciążonych dynamicznie ujawniła liczne defekty. Stwierdzono, że głównym mechanizmem deformacji jest bliźniakowanie. Zaobserwowano również duże odkształcenia plastyczne i wiele innych zmian mikrostruktury, takich jak pasma ścinania, pęknięcia i zarodkowanie martenzytu.
Rocznik
Strony
51--72
Opis fizyczny
Bibliogr. 23 poz., fot., rys., tab., wykr.
Twórcy
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, Institute of Armament Technology 2 Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, Institute of Armament Technology 2 Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, Institute of Armament Technology 2 Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, Institute of Armament Technology 2 Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland
Bibliografia
  • [1] Brytan, Zbigniew. 2017. “Comparison of Vacuum Sintered and Selective Laser Melted Steel AISI 316L”. Archives of Metallurgy and Materials 62 (4) : 2125-2131.
  • [2] Li, Bolin, Tingting Wang, Peizhen Li, Shenghai Wang, and Li Wang. 2021. “Selective Laser Melting of 316L Stainless Steel: Influence of Co-Cr-Mo-W Addition on Corrosion Resistance”. Metals 11 (4) : 597-1-12.
  • [3] Zhai, Wengang, Wei Zhou, Zhiguang Zhu, and Sharon Mui Ling Nai. 2022. “Selective Laser Melting of 304L and 316L Stainless Steels: A Comparative Study of Microstructures and Mechanical Properties”. Steel Research International 93 (7) : 2100664.
  • [4] Röttger, Arne, Johannes Boes, W. Theisen, Magnus Thiele, and Cemal Esen. 2020. “Microstructure and mechanical properties of 316L austenitic stainless steel processed by different SLM devices”. The International Journal of Advanced Manufacturing Technology 108 (3) : 769-783.
  • [5] Bahl, Sumit, Sumeet Mishra, K.U. Yazar, Immanuel Raju Kola, Kaushik Chatterjee, and Satyam Suwas. 2019. “Non-equilibrium microstructure, crystallographic texture and morphological texture synergistically result in unusual mechanical properties of 3D printed 316L stainless steel”. Additive Manufacturing 28 : 65-77.
  • [6] Brytan, Zbigniew, Mirosław Bonek, Leszek Adam Dobrzański, Daniele Ugues, and Marco Actis Grande. 2010. “The Laser Surface Remelting of Austenitic Stainless Steel”. Materials Science Forum 654-656 : 2511-2514.
  • [7] Mertens A., S. Reginster, H. Paydas, Q. Contrepois, T. Dormal, O. Lemaire, and J. Lecomte-Beckers. 2014. “Mechanical properties of alloy Ti-6Al-4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures”. Powder Metallurgy 57 (3) : 184-189.
  • [8] Liverani, E., S. Toschi, L. Ceschini, and A. Fortunato. 2017. “Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel”. Journal of Materials Processing Technology 249 : 255-263.
  • [9] Yadroitsev, Igor, Pavel Krakhmalev, Ina Yadroitsava, Sten Å.H. Johansson, and I. Smurov. 2012. “Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder,” Journal of Materials Processing Technology 213 (4) : 606-613.
  • [10] Yadollahi, Aref, Nima Shamsaei, Scott M. Thompson, and Denver W. Seely. 2015. “Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel”. Materials Science and Engineering A 644 : 171-183.
  • [11] Janiszewski, Jacek. 2012. Badania materiałów inżynierskich
  • w warunkach obciąż enia dynamicznego. Warszawa: Wydawnictwo Wojskowej Akademii Technicznej.
  • [12] Chen, Weinong, and Bo Song. 2011. Split Hopkinson (Kolsky) Bar. USA, Boston, MA: Springer.
  • [13] Kolsky, Herbert. 1964. “Stress waves in solids”. Journal of Sound and Vibration 1 (1) : 88-110.
  • [14] Sreenivasan P.R., and S.K. Ray. 2001. Mechanical Testing at High Strain Rates. In Encyclopedia of Materials: Science and Technology 5269-5271. Elsevier.
  • [15] Zejian, Xu, Ding Xiaoyan, Zhang Weiqi, and Huang Fenglei. 2017. “A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique”. International Journal of Impact Engineering 101 : 90-104.
  • [16] Rusinek, Alexis, and J.R. Klepaczko. 2001. “Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress”. International Journal of Plasticity 17 (1) : 87-115.
  • [17] Meyer, W. Lothar, and Thorsten Halle. 2011. “Shear strength and shear failure, overview of testing and behavior of ductile metals”. Mechanics of Time-Dependent Materials 15 (4) : 327-340.
  • [18] Saeidi, K., X. Gao, Y. Zhong, and Z. J. Shen. 2015. “Hardened austenite steel with columnar sub-grain structure formed by laser melting”. Materials Science and Engineering A 625 : 221-229.
  • [19] Yadollahi, Aref, Denver Seely, Brian Patton, and Nima Shamsaei. 2015. “Microstructural Features and Mechanical Properties of 316L Stainless Steel fabricated by Laser Additive Manufacture”. In Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 5-9 January 2015, Kissimmee, Florida, USA. DOI: 10.2514/6.2015-1355.
  • [20] Wang, Liang, and Sergio D. Felicelli. 2007. “Process Modeling in Laser Deposition of Multilayer SS410 Steel”. Journal of Manufacturing Science and Engineering 129 (6) : 1028-1034.
  • [21] de Terris, Thibaut, Olivier Andreaua, Patrice Peyrea, Frédéric Adamskia, Imade Koutiria, Cyril Gornya, and Corinne Dupuya. 2019. “Optimization and comparison of porosity rate measurement methods of Selective Laser Melted metallic parts”. Additive Manufacturing 28 : 802-813.
  • [22] Chen, Jie, Haiyang Wei, Kuo Bao, Xianfeng Zhang, Yang Cao, Yong Peng, Jian Kong, and Kehong Wang. 2021. “Dynamic mechanical properties of 316L stainless steel fabricated by an additive manufacturing process”. Journal of Materials Research and Technology 11 : 70-179.
  • [23] Shen, Y.F., X.X. Li, X. Sun, Y.D. Wang, and L. Zuo. 2012. “Twinning and martensite in a 304 austenitic stainless steel”. Materials Science and Engineering: A 552 : 514-522.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69532ba8-a2b6-4872-9d33-95bea5c264f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.