Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Aquatic ecosystems are receivers for various pollutants, for instance, Chromium (Cr, one of the toxic heavy metals) and phosphorus (one of the biggest causes of water eutrophication). Such contaminants have brought serious impact on health and security of aquatic ecosystems. Physiological integration between the integrated ramets of clonal plants can increase their tolerance to environmental stress. It is hypothesized that physiological integration and phosphorus could facilitate the expansion of amphibious clonal plants from soil to Cr-polluted aquatic habitats. This study was conducted to primarily examine how physiological integration and phosphorus affected the effects of Cr on plant growth and population expansion. An amphibious clonal herbaceous plant Alternanthera philoxeroides was used to simulate the spread process by induced stolon connection or disconnection, Cr pollution and different levels of phosphorus in aquatic habitats. We found that Cr pollution deployed to apical ramets directly decreased the growth and photosynthetic parameters of the apical ramets that lacked connections to the basal ramets, but these effects could be mitigated by stolon connections. Cr pollution had no effects on these disconnected basal ramets, but the transmission of Cr from the apical parts via connected stolons negatively affected the growth of the basal ramets. Increasing the phosphorus not only increased the growth but also decreased the levels of Cr that accumulated in the plant tissues and the bioactivity of Cr. These results indicated that increasing the phosphorus could benefit the population expansion and establishment of A. philoxeroides through physiological integration from terrestrial to Cr-polluted aquatic habitats.
Czasopismo
Rocznik
Tom
Strony
369--381
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
- School of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
- Center for Rural Environmental Studies, Qingdao Agricultural University, Qingdao 266109, PR China
autor
- International Office of Cooperation & Exchange, Qingdao Agricultural University, Qingdao 266109, PR China
Bibliografia
- [1] Batool R., Hameed M., Ashraf M., Fatima S., Nawaz T., Ahmad M. S. A. 2014 – Structural and functional response to metal toxicity in aquatic Cyperus alopecuroides Rottb. – Limnologica, 48: 46-56.
- [2] Cervantes C., Campos G. J., Devars S., Gutierrez C. F., Loza T. H., Torres G. J. C., Moreno S. R. 2001 – Interactions of chromium with microorganisms and plants – FEMS Microbiol. Rev.25: 335-347.
- [3] Dong B.-C., Alpert P., Zhang Q., Yu F.-H. 2015 – Clonal integration in homogeneous environments increases performance of Alternanthera philoxeroides – Oecologia, 179: 393-403.
- [4] Geng Y.-P., van Klinken R. D., Sosa A., Li B., Chen J.-K., Xu C.-Y. 2016 – The relative importance of genetic diversity and phenotypic plasticity in determining invasion success of a clonal weed in the USA and China – Front. Plant Sci.7: 213.
- [5] Gruntman M., Novoplansky A. 2011 – Onto-genetic contingency of tolerance mechanisms in response to apical damage – Ann. Bot.108: 965-973.
- [6] Hartnett D. C., Bazzaz F. A.1983 – Physiological integration among intraclonal ramets in Solidago canadensis – Ecology, 64: 79-788.
- [7] Jia Y., Chen W., Zuo Y., Lin L., Song L. – 2018. Heavy metal migration and risk transference associated with cyanobacterial blooms in eutrophic freshwater – Sci. Total Environ.613: 1324-1330.
- [8] Jiang N., Luo X., Zeng J., Yang Z.-R., Zheng L.-N., Wang S.-T. 2010 – Lead toxicity induced growth and antioxidant responses in Luffa cylindrica seedlings – Int. J. Agric. Biol.12: 205-210.
- [9] Li J.-J., Peng P.-H., He W.-M. 2012 – Physical connection decreases benefits of clonal integration in Alternanthera philoxeroides under three warming scenarios – Plant Biology, 14: 265-270.
- [10] Liu L., Lin H.-F., Dong B.-C. 2016 – Clonal integration enhances expansion ability of Ipomoea aquatica in aquatic - terrestrial ecotones – Aquat. Bot.128: 33-40.
- [11] Luo F.-L., Xing Y.-P., Wei G.-W., Li C.-Y., Yu F.-H. 2017 – Clonal integration facilitates spread of Paspalum paspaloides from terrestrial to cadmium contaminated aquatic habitats – Plant Biology, 19: 859-867.
- [12] Malar S., Vikram S. S., Favas P. J., Perumal V. 2014 – Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)] – Bot. Stud.55: 54.
- [13] Nagajyoti P. C., Lee K. D., Sreekanth T. V. M. 2010 – Heavy metals, occurrence and toxicity for plants: a review – Environ. Chem. Lett.8: 199-216.
- [14] Peltzer D. A. 2002 – Does clonal integration improve competitive ability? A test using aspen (Populus tremuloides [Salicaceae]) invasion into prairie – Am. J. Bot.89: 494-499.
- [15] Peng Z., Li Z.-G., He B., Li S.-L., Yang P.-F., Li Z.-W., Liang H. 2015 – Root decomposition of Coix aquatica Roxb in constructed wetlands and release and changes in chemical form of chromium – Acta Scientiae Circumstantiae, 35: 238-244 (in Chinese, English summary).
- [16] Powell N., Shilton A., Chisti Y., Pratt S. 2009 – Towards a luxury uptake process via microalga – Defining the polyphosphate dynamics – Water Res.43: 4207-4213.
- [17] Powell N., Shilton A. N., Pratt S., Chisti Y. 2008 – Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds – Environ. Sci. Tec.42: 5958-5962.
- [18] Qian H.-F., Sun Z.-Q., Sun L.-W., Jiang Y.-F., Wei Y., Xie J., Fu Z.-W. 2013 – Phosphorus availability changes chromium toxicity in the freshwater alga Chlorella vulgaris – Chemosphere, 93: 885-891.
- [19] Ren J., Gao S.-X., Tao L., Li H. 2016 – Pb removal using mixed substrates in a constructed laboratory-scale unvegetated vertical subsurface-flow wetland – Pol. J. Environ. Stud.25: 283-290.
- [20] Roiloa S. R., Alpert P., Tharayil N., Hancock G., Bhowmik P. C. 2007 – Greater capacity for division of labour in clones of Fragaria chiloensis from patchier habitats – J. Ecol.95: 397-405.
- [21] Roiloa S. R., Retuerto R. 2006 – Physiological integration ameliorates effects of serpentine soils in the clonal herb Fragaria vesca – Physiol. Plantarum.128: 662-676.
- [22] Roiloa S. R., Retuerto R. 2012 – Clonal integration in Fragaria vesca growing in metal-polluted soils: parents face penalties for establishing their offspring in unsuitable environments – Ecol. Res.27: 95-106.
- [23] Ross S. M. 1994 – Toxic metals in soil - plant systems (In: Sources and forms of potentially toxic metals in soil – plant systems, Ed: S. M. Ross) – Chichester: Wiley, 3-25.
- [24] Sayantan D., Shardendu S. 2013 – Amendment in phosphorus levels moderate the chromium toxicity in Raphanus sativus L. as assayed by antioxidant enzymes activities – Ecotox. Environ. Saf.95: 161-170.
- [25] Sayantan D., Shardendu S.2015 – Phosphorus amendment competitively prevents chromium uptake and mitigates its toxicity in Spinacea oleracea L. – Indian J. Exp. Biol.53: 395-405.
- [26] Shardendu S., Sayantan D., Sharma D., Irfan S. 2012 – Luxury uptake and removal of phosphorus from water column by representative aquatic plants and its implication for wetland management – ISRN Soil Sci.: 1-9.
- [27] Song Y.-B., Yu F.-H., Keser L. H., Dawson W., Fischer M., Dong M., Kleunen Mv. 2013 – United we stand, divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness – Oecologia, 171: 317-327.
- [28] Soriano-Disla J. M., Gómez I., Navarro-Pedreño J., Jordán M. M. 2014 – The transfer of heavy metals to barley plants from soils amended with sewage sludge with different heavy metal burdens – J. Soil Sediment.14: 687-696.
- [29] Sotton B., Guillard J., Anneville O., Maréchal M., Savichtcheva O., Domaizon I. 2014 – Trophic transfer of microcystins through the lake pelagic food web: evidence for the role of zooplankton as a vector in fish contamination – Sci. Total. Environ.466: 152-163.
- [30] Sui Y., He W.-M., Pan X., Dong M. 2011 – Partial mechanical stimulation facilitates the growth of the rhizomatous plant Leymus secalinus: modulation by clonal integration – Ann. Bot.107: 693-697.
- [31] Vajravel S., Saravanan P. 2013 – Accumulation of chromium and its effects on physiological and biochemical parameters of Alternanthera philoxeroides seedlings – J. Pharm. Res.7: 633-639.
- [32] Wang N., Yu F.-H., He W.-M., Liu F.-H., Liu J.-M., Dng M. 2008 – Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanthera philoxeroides under severe stress – Ann. Bot.101: 671-678.
- [33] Wang N., Yu F.-H., Li P.-X., He W.-M., Liu J., Yu G.-L., Song B., Dong M. 2009 – Clonal integration supports the expansion from terrestrial to aquatic environments of the amphibious stoloniferous herb Alternanthera philoxeroides – Plant Biology, 11: 483-489.
- [34] Xu L., Yu F.-H., van Drunen E., Schieving F., Dong M., Anten N. P. R. 2012 – Trampling, defoliation and physiological integration affect growth, morphological and mechanical properties of a root-suckering clonal tree – Ann. Bot.109: 1001-1008.
- [35] Xu L., Zhou Z.-F. 2016 – Effects of Cu pollution on the expansion of an amphibious clonal herb in aquatic-terrestrial ecotones – PloS ONE, 11: e0164361.
- [36] Xu L., Zhou Z.-F. 2017 – Physiological integration affects expansion of an amphibious clonal plant from terrestrial to Cu-polluted aquatic environments – Sci. Rep.7: 43931.
- [37] Xu S., Jaffé P. R. 2006 – Effects of plants on the removal of hexavalent chromium in wetland sediments – J. Environ. Qual.35: 334-341.
- [38] Yan X., Wang H.-W., Wang Q.-F., Rudstamc L. G. 2013 – Risk spreading, habitat selection and division of biomass in a submerged clonal plant: Responses to heterogeneous copper pollution – Environ. Pollut.174: 114-120.
- [39] You W.-H., Fan S.-F., Yu D., Xie D., Liu C.-H. 2014 – An invasive clonal plant benefits from clonal integration more than a co-occurring native plant in nutrient-patchy and competitive environments – PloS ONE, 9: e97246-e97246.
- [40] Zazo J. A., Paull J. S., Jaffe P. R. 2008 – Influence of plants on the reduction of hexavalent chromium in wetland sediments – Environ. Pollut.156: 29-35.
- [41] Zeng F., Zhou W., Qiu B., Ali S., Wu F., Zhang G. 2011 – Subcellular distribution and chemical forms of chromium in rice plants suffering from different levels of chromium toxicity – J. Plant Nutr. Soil Sci.174: 249-256.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6950fbf5-cc6f-4881-b07f-adfbf70b5f90