PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Climatic Conditions to Capacity of Airborne Ultrasonic Channel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we estimate the upper limit of the transmission data rate in airborne ultrasonic communications, under condition of the optimal power allocation. The presented method is based on frequency response of a channel in case of single-path LOS propagation under different climatic conditions and AWGN background noise model, and it can be easily extended to the case of frequency-dependent noise. The obtained results go beyond the discrete distances for which experimental SNR values were available, and are more accurate than the previous calculations in the literature, due to the inclusion of the channel frequency response and its changes over the distance. The impact of air temperature, relative humidity and the atmospheric pressure on the channel capacity is also investigated. The presented results can serve as a reference during the design of airborne ultrasonic communication systems operating in the far-field region.
Rocznik
Strony
455--461
Opis fizyczny
Bibliogr. 28 poz., wykr., rys., tab.
Twórcy
  • Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
Bibliografia
  • [1] F. J. Canete, J. L´opez-Fern´andez, C. Garc´ıa-Corrales, A. S´anchez, E. Robles, F. J. Rodrigo, and J. F. Paris, “Measurement and modeling of narrowband channels for ultrasonic underwater communications,” Sensors, vol. 16, no. 2, p. 256, Feb 2016. [Online]. Available: http://www.mdpi.com/1424-8220/16/2/256
  • [2] T. J. Lawry, K. R. Wilt, J. D. Ashdown, H. A. Scarton, and G. J. Saulnier, “A high-performance ultrasonic system for the simultaneous transmission of data and power through solid metal barriers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, no. 1, pp. 194–203, January 2013.
  • [3] D. Ma, Y. Shi, W. Zhang, and G. Liu, “Design of acoustic transmission along drill strings for logging while drilling data based on adaptive NC-OFDM,” AEU - International Journal of Electronics and Communications, vol. 83, pp. 329 – 338, 2018.
  • [4] W. Jiang and W. M. D. Wright, “Evaluation of multiple-channel OFDM based airborne ultrasonic communications,” Ultrasonics, vol. 71, pp. 288–296, 2016.
  • [5] C. Li, D. A. Hutchins, and R. J. Green, “Short-range ultrasonic communications in air using quadrature modulation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 10, pp. 2060–2072, October 2009.
  • [6] ——, “Short-range ultrasonic digital communications in air,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, no. 4, pp. 908–918, April 2008.
  • [7] G. E. Santagati and T. Melodia, “A software-defined ultrasonic networking framework for wearable devices,” IEEE/ACM Transactions on Networking, vol. 25, no. 2, pp. 960–973, April 2017.
  • [8] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the IRE, vol. 37, no. 1, pp. 10–21, Jan 1949.
  • [9] R. A. Primerano, “High bit-rate digital communication through metal channels,” Ph.D. dissertation, Drexel University, July 2010.
  • [10] J. D. Ashdown, G. J. Saulnier, T. J. Lawry, K. R. Wilt, and H. A. Scarton, “High-rate ultrasonic communication through metallic barriers using MIMO-OFDM techniques,” in MILCOM 2012 - 2012 IEEE Military Communications Conference, Oct 2012, pp. 1–6.
  • [11] L. Galluccio, T. Melodia, S. Palazzo, and G. E. Santagati, “Challenges and implications of using ultrasonic communications in intra-body area networks,” in 2012 9th Annual Conference on Wireless On-Demand Network Systems and Services (WONS), Jan 2012, pp. 182–189.
  • [12] M. Stojanovic, “On the relationship between capacity and distance in an underwater acoustic communication channel,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 11, no. 4, pp. 34–43, Oct. 2007. [Online]. Available: http://doi.acm.org/10.1145/1347364.1347373
  • [13] G. Mazurek, “Channel capacity of short-range ultrasonic communications in air,” IEEE Communications Letters, vol. 22, no. 1, pp. 117–120, Jan 2018.
  • [14] H. E. Bass, L. C. Sutherland, A. J. Zuckerwar, D. T. Blackstock, and D. M. Hester, “Atmospheric absorption of sound: Further developments,” The Journal of the Acoustical Society of America, vol. 97, no. 1, pp. 680–683, 1995.
  • [15] G. Mazurek, “Basic channel parameters of ultrasound transmission in air,” in 2018 22nd International Microwave and Radar Conference (MIKON), May 2018, pp. 607–609.
  • [16] C. Li, D. A. Hutchins, and R. J. Green, “Response of an ultrasonic communication channel in air,” IET Communications, vol. 6, no. 3, pp. 335–343, February 2012.
  • [17] H. E. Bass, L. C. Sutherland, and A. J. Zuckerwar, “Atmospheric absorption of sound: Update,” The Journal of the Acoustical Society of America, vol. 88, no. 4, pp. 2019–2021, 1990.
  • [18] W. Jiang and W. M. D. Wright, “Multichannel ultrasonic data communications in air using range-dependent modulation schemes,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 63, no. 1, pp. 147–155, Jan 2016.
  • [19] J. Krautkr¨amer and H. Krautkr¨amer, Ultrasonic Testing of Materials, 4th ed. Springer Berlin Heidelberg, 1990.
  • [20] J. Li and B. Piwakowski, “A time-domain model and experimental validation of the acoustic field radiated by air-coupled transducers,” Ultrasonics, vol. 82, pp. 114–129, 2018.
  • [21] J. H. Ginsberg, Acoustics – A Textbook for Engineers and Physicists. Volume II: Applications. Cham, Switzerland: Springer International Publishing AG, 2018.
  • [22] H. T. Friis, “A note on a simple transmission formula,” Proceedings of the IRE, vol. 34, no. 5, pp. 254–256, May 1946.
  • [23] W. Jiang andW. M. D. Wright, “Indoor airborne ultrasonic wireless communication using OFDM methods,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 64, no. 9, pp. 1345–1353, Sept 2017.
  • [24] SensComp, Inc., Series 600 environmental grade ultrasonic sensor. Available: http://www.senscomp.com/pdfs/series-600-envir-gradeultrasonic-sensor-spec.pdf: Accessed on Sep. 27, 2017. [Online], 2015.
  • [25] H. E. Bass and L. N. Bolen, “Ultrasonic background noise in industrial environments,” Journal of The Acoustical Society of America, vol. 78, pp. 2013–2016, 12 1985.
  • [26] W. Jiang and W. M. D. Wright, “Full-duplex airborne ultrasonic data communication using a pilot-aided QAM-OFDM modulation scheme,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 63, no. 8, pp. 1177–1185, Aug 2016.
  • [27] R. G. Gallager, Information Theory and Reliable Communication. New York: J. Wiley, 1968.
  • [28] T. Toivo, P. Orrevetel¨ainen, S. K¨ann¨al¨a, and T. Toivonen, Survey on limiting exposure to ultrasound (STUK-TR26). Helsinki, Finland: Radiation and Nuclear Safety Authority, June 2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-694f43b9-9b72-414b-830b-ec46fe3c85a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.