PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Nanoparticles in the Process of Phase Change Paraffin in a Chamber

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, melting of a phase changing material enriched with nanoparticles in a circular ring-rectangular enclosure was investigated and the results were analyzed. At the beginning of the melting process in the absence of a natural displacement, the mechanism of conduction heat transfer around the hot cylinder is the dominant mechanism. Over time, natural displacement gradually appears and deforms the melting boundary above the cylinder. Over time, when the thickness of the liquid phase grows, the thermal resistance increases, this can be verified by reviewing the Nusselt chart. So this phenomenon reduces the rate of melting and temperature changes. The results show that increasing the nanoparticle volume fraction due to increased conductivity and decreasing latent heat causes an increase in the melting rate and the amount of energy absorbed. From the study of various volume fractions, it can be concluded that the use of a higher volume fraction of 3% is more appropriate both in terms of energy and in terms of the melting rate. However, it should be taken into account that if the melting rate exceeds this value, it may cause agglomeration and deposition of nanoparticles and reducing system efficiency.
Twórcy
  • Department of Mechanical Engineering , College of Engineering , University of Zakho, Zakho City, Iraq
Bibliografia
  • 1. Dincer, I., & Rosen, MA. (2002). Thermal energy storage: systems and applications. Chichester, England: Wiley.
  • 2. Demirbas, MF. (2006). Thermal energy storage and phase change materials: an overview. Energy Sources Part B ,1, 85–95.
  • 3. Mondal, S. (2008). Phase change materials for smart textiles – an overview. Appl Therm Eng, 28:15, 36–50.
  • 4. Groulx, Dominic. “Numerical study of nano-enhanced PCMs: are they worth it.” Proceedings of the 1st Thermal and Fluid Engineering Summer Conference, TFESC, New York City, USA. 2015.
  • 5. Gao, Dongyan, et al. “Lattice Boltzmann modeling of melting of phase change materials in porous media with conducting fins.” Applied Thermal Engineering 118 (2017): 315–327.
  • 6. Jung, Uk-Hee, et al. “Numerical investigation on the melting of circular finned PCM system using CFD & full factorial design.” Journal of Mechanical Science & Technology 30.6 (2016).
  • 7. Brent, A.D., Voller, V.R., & Reid, K.J. (1988). Enthalpy–porosity technique for modeling convection–diffusion phase change: application to the melting of a pure metal, Numer. Heat Transfer, 13 (3), 297–318.
  • 8. Beckermann, C., & Viskanta R. (1989). Effect of solid subcooling on natural convection melting of a pure metal, ASME J. Heat Transfer 111, 416–424.
  • 9. Asako, Y., Faghri, M., Charmchi, M., & Bahrami, P.A. (1995). Numerical solution for melting of unfixed rectangular phase-change material under low-gravity environment, Numer. Heat Transfer, Part A 25, 191–208.
  • 10. Wang, Y., Amiri, A., & Vafai, K. (1999). An experimental investigation of the melting process in a rectangular enclosure, Int. J. Heat Mass Transfer 42, 3659–3672.
  • 11. Gong, Z.X., Devahastin, S., & Mujumdar, A.S. (1999). Enhanced heat transfer in free convection-dominated melting in a rectangular cavity with an isothermal vertical wall, Appl. Therm. Eng. 19, 1237–1251.
  • 12. Zhang, Y., Chen, Z., Wang, Q., & Wu Q. (1993). Melting in an enclosure with discrete heating at a constant rate. Exp. Fluid Therm. Sci. 6, 196–201.
  • 13. Jianhua, Z., Zhongqi, C., Dengying, L., & Ji, L. (2000). Experimental study on melting in a rectangular enclosure heated below with discrete heat sources. J. Therm. Sci, 10 (3), 254–259.
  • 14. Pal, D., & Joshi Y.K. (2001). Melting in a side heated tall enclosure by a uniformly dissipating heat source. Int. J. Heat Mass Transfer 44, 375–387.
  • 15. Hamdan, M.A., & Al-Hinti, I. (2004). Analysis of heat transfer during the melting of a phase-change material. Appl. Therm. Eng., 24, 1935–1944.
  • 16. Faraji, M., & Qarnia, H. (2010). Numerical study of melting in an enclosure with discrete protruding heat sources. Appl. Math. Model, 34, 1258–1275.
  • 17. Qarnia, H., Draoui, A., & Lakhal, E.K. (2013). Computation of melting with natural convection inside a rectangular enclosure heated by discrete protruding heat sources. Appl. Math. Model, 37, 3968–3981.
  • 18. Samara, F., Groulx, D., & Biwole, P.H. (2012). Natural convection driven melting of phase change material: comparison of two methods, in: Excerpt from the Proceeding of the COMSOL Conference. Boston, USA.
  • 19. Voller, V. R., & Swaminathan, C. R. (1991). Generalized Source-Based Method for Solidification Phase Change. Numer. Heat Transfer B, 19(2),175–189.
  • 20. Voller V. R., & Prakash, C. (1987). A Fixed-Grid Numerical Modeling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems. Int. J. Heat Mass Transfer, 30, 1709–1720.
  • 21. Kandasamy, R., Wang, X.Q, & Mujumdar, A.S. (2008). Transient cooling of electronics using phase change material (PCM)-based heat sinks. Applied Thermal Engineering 28, 1047–1057.
  • 22. Chow, L.C., & Zhong J.K. (1996). Thermal conductivity enhancement for phase change storage media. International Communications in Heat andMass Transfer 23, 91–100.
  • 23. Vajjha, R.S., Das, D.K., & Namburu, P.K. (2010). Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. International Journal of Heat Fluid Flow, 31, 613–621.
  • 24. Kumar, Lokendra, et al. “Experimental investigations on melting of lead in a cuboid with constant heat flux boundary condition using thermal neutron radiography.” International Journal of Thermal Sciences 61 (2012): 15–27.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-694b924c-fbcc-42de-84ae-ec5406bf348a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.