PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Intermetallic Phases in Alloyed Cast Iron with 18%Si Addition

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an analysis of a selected grade of high silicon cast iron intended for work in corrosive and abrasive conditions. The text describes its microstructure taking into account the process of crystallization, TDA analysis, EDS, XRD and the chemical composition analysis. In order to determine the phase composition, X-ray diffraction tests were carried out. The tests were executed on a Panalytical X'Pert PRO X-ray diffractometer with filtration of radiation from a lamp with copper anode and PIXcel 3D detector on the deflected beam axis. Completed tests allowed to describe the microstructure with detailed consideration of intermetallic phases present in the alloy. Results of the analysis of the examined alloy clearly show that we deal with intermetallic phases of Fe3Si, Fe5Si3 types, as well as silicon ferrite and crystals of silicon. In the examined alloy, we observed the phenomenon of segregation of carbon, which, as a result of this process, enriches the surface of silicon crystals, not creating a compound with it. Moreover, the paper demonstrates capability for crystallization of spheroidal graphite in the examined alloy despite lack of elements that contribute to balling in the charge materials.
Rocznik
Strony
37--42
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Silesian University of Technology, Department of Foundry Engineering, Gliwice, Poland
Bibliografia
  • [1] Podrzucki, C. (1991). Cast Iron. Volume 1&2. Kraków: ZG Stop. (in Polish).
  • [2] Fraś, E. & Podrzucki, C. (1981). Modified cast iron. Volume 675. Kraków: AGH. (in Polish).
  • [3] Kosowski, A. & Podrzucki, C. (1981). Alloy cast iron. Volume 825. Kraków AGH. (in Polish).
  • [4] Sakwa, W. (1974). Cast Iron. Śląsk: Katowice. (in Polish).
  • [5] Edited by Davis, J.R. (1996). Cast Irons,, ASM International. Handbook Committee, Materials Park, Ohio, ASM International.
  • [6] EL-Sawy, E.E.T., El-Hebeary, M.R. & El Mahallawi, I.S.E. (2017). Effect of manganese, silicon and chromium additions on microstructure and wear characteristics of grey cast iron for sugar industries applications. Wear. 390-391, 113-124. https://doi.org/10.1016/j.wear.2017.07.007.
  • [7] Johnson, O., Talabi, S. I., Olumuyiwa, I. A. & Afemefuna, T. O. (2013). Effect of silicon additions on the wear properties of grey cast iron. Journal of Minerals and Materials Characterization and Engineering. 1, 61-67. DOI:10.4236/ jmmce.2013.12012.
  • [8] Mohamed, I.A., Ibraheem, A.A., Khashaba, M.I. & Ali, W. (2013). Influence of heat treatment on friction and wear of ductile iron: role of copper and molybdenum. International Journal of Control, Automation and Systems. 2(3), 23-30.
  • [9] Atanda, P., Okeowo, A. & Oluwole, O. (2010). Microstructural study of heat treated chromium alloyed grey cast iron. Journal of Materials Engineering and Performance. 9(3), 263-274. DOI: 10.4236/jmmce.2010. 93021.
  • [10] Agunsoye, O., Bello, S. A., Hassan, S. B., Adeyemo, R. G. & Odii, J. M. (2014). The effect of copper addition on the mechanical and wear properties of grey cast iron. Journal of Minerals and Materials Characterization and Engineering. 2, 470-483. DOI: 10.4236/jmmce.2014.25048.
  • [11] Delprete, C., Sesana, R. & Vercelli, A. (2010). Multiaxial damage assessment and life estimation: application to an automotive exhaust manifold. Procedia Engineering. 2, 725-734. DOI:10.1016/j.proeng.2010.03.078.
  • [12] Magnusson Åberg, L. & Hartung, C. (2012). Solidification of SiMo Nodular cast iron for high temperature applications. Trans Indian Inst Met. 65(6), 633-636. DOI 10.1007/s12666-012-0216-8.
  • [13] Matteis, P. Scavino, G., Castello, A. & Firrao, D. (2014,). High temperature fatigue properties of a Si-Mo ductile cast iron. Procedia Materials Science 3, 2154-2159. DOI: 10.1016/j.mspro.2014.06.349.
  • [14] Korb, L. J. & Olson, D. L. (1992). Corrosion. Volume 13, (9th ed.), International ASM Handbook.
  • [15] Stefanescu, D.M. (1998). Casting. Volume 15. (4th ed.). International ASM Handbook.
  • [16] Wojciechowski, Ł., Eymard, S., Ignaszak, Z. & Mathia, T.G. (2015). Fundamentals of ductile cast iron scuffing at the boundary lubrication regime. Tribology International. 90, 445-454.
  • [17] Li, J., Wang, S., Zhao, A., Wang, L. & Liu, F. (2007). Corrosion properties of high silicon iron-based alloys in nitric acid. China Foundry. 4(4), 276-279.
  • [18] Kim, B.H., Shin, J.S., Lee, S.M. & Moon, B.M. (2007). Improvement of tensile strength and corrosion resistance of high-silicon cast irons by optimizing casting process parameters. Journal of Materials Science. 42, 109-117. DOI 10.1007/s10853-006-1081-9.
  • [19] Castro, D.B.V., Rossini, L.S., Malafaia, A.M.S., Angeloni, M. & Maluf, O. (2011). Influence of Annealing Heat Treatment and Cr, Mg, and Ti Alloying on the Mechanical Properties of High-Silicon Cast Iron, Journal of Materials Engineering and Performance. 20(7), 1346-1354. DOI: 10.1007/s11665-010-9733-y
  • [20] Stawarz, M., Gromczyk, M., Jezierski, J. & Janerka, K. (2015). Analysis of the high silicon cast iron crystallization process with TDA method. In Metal 2015: 24th International Conference on Metallurgy and Materials. Ostrava: TANGER 2015, (pp. 42-47).
  • [21] Stawarz, M., Janerka, K., Jezierski, J. & Szajnar, J. (2014). Thermal effect of phase transformations in high silicon cast iron. In Metal 2014: 23rd International Conference on Metallurgy and Materials. Ostrava: TANGER 2014, (pp.123- 128).
  • [22] Stawarz, M. (2019). The role of intermetallic phases in silicon cast iron. Katowice - Gliwice: Archives of Foundry Engineering. (in Polish).
  • [23] Onsoien, M. I. & Skaland, T. (2001). Preconditioning of Gray Iron Melts using Ferrosilicon or Silicon Carbon, American Foundry Society.
  • [24] Janerka, K. (2010): Carburizing of liquid iron alloys. Gliwice: Silesian Technical University. (in Polish).
  • [25] Stefanescu, D.M., Alonso, G., Larranaga, P., De la Fuente, E. & Suarez, R. (2016). On the crystallization of graphite from liquid iron - carbon – silicon melts. Acta Materialia. 107, 102-126. DOI: 10.1016/j.actamat.2016.01.047.
  • [26] Stefanescu, D.M., Alonso, G., Larranaga, P., De la Fuente, E. & Suarez, R. (2017). Reexamination of crystal growth theory of graphite in iron-carbon alloys. Acta Materialia. 139, 109 – 121. DOI: 10.1016/j.actamat.2017.08.004.
  • [27] Stefanescu, D.M., Alonso, G., Larranaga, P., De la Fuente, E. & Suarez R. (2018). Reassessment of crystal growth theory of graphite in cast iron. Materials Science Forum. 925, 36-44. DOI: 10.4028/www.scientific.net/MSF.925.36.
  • [28] Alonso, G., Stefanescu, D.M., De la Fuente, E., Larranaga, P. & Suarez, R. (2018). The influence of trace elements on the nature of the nuclei of the graphite in ductile iron. Materials Science Forum. 925, 78-85. DOI: 10.4028/www.scientific. net/MSF.925.78.
  • [29] Górny, M. & Stefanescu, D.M. (2017). Thin-wall ductile iron castings. In Cast Iron Science and Technology. Stefanescu, D.M., Ed.; ASM Handbook; ASM International: Columbus, OH, USA; Volume 1A, 617-628, ISBN 978-1-62708-133-7.
  • [30] Górny, M., Kawalec, M., Sikora, G., Olejnik, E., & Lopez, H. (2018). Primary Structure and Graphite Nodules in Thin-Walled High-Nickel Ductile Iron Castings. Metals. 8, 649. DOI:10.3390/met8080649.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-694b05c9-9e3e-41f8-b2f1-27f3917457aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.