PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of nitrate reductase and nitrite reductase In NaCl tolerance in eelgrass (Zostera marina L.)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nitrate reductase (NR) and nitrite reductase (NiR) play important roles in nitrate assimilation in plants. Previous studies have indicated that NR and NiR in eelgrass may contribute to its NaCl tolerance. This study investigated the expression characteristics and the biological functions of NR and NiR in eelgrass (Zostera marina), named as ZmNR and ZmNiR, were cloned, characterised and overexpressed in both bacteria and tobacco. The open reading frames of ZmNR and ZmNiR contain 2628 and 1773 nucleotides that encode 875 and 590 amino acids respectively. Amino acid sequence alignment indicated that the purported ZmNR and ZmNiR proteins presented low homology with other plant NR and NiR sequences. Real-time quantitative PCR revealed that the expression of ZmNR and ZmNiR was supressed when exposed to low salinity and induced by high salinity. Further physiological analyses demonstrated that blocking nitrate assimilation by adding Na2WO4 in eelgrass reduced its tolerance to NaCl stress. The heterologous expression of the ZmNR and ZmNiR genes in Escherichia coli and Nicotiana benthamiana could confer tolerance to NaCl stress. Physiological and growth analyses suggested that ZmNR and ZmNiR in plants could resist NaCl stress by regulating various physiological pathways and biochemical processes triggered by nitric oxide (NO). Taken together, these results suggested that NR-dependent NO synthesis may play an important role in NaCl tolerance in eelgrass.
Rocznik
Strony
111--125
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
  • Marine College of Shandong University, 180 Wenhua Road, Weihai 264200, China
autor
  • Marine College of Shandong University, 180 Wenhua Road, Weihai 264200
autor
  • Marine College of Shandong University, 180 Wenhua Road, Weihai 264200, China
autor
  • Marine College of Shandong University, 180 Wenhua Road, Weihai 264200, China
autor
  • Marine College of Shandong University, 180 Wenhua Road, Weihai 264200, China
Bibliografia
  • [1] Touchette BW, Burkholder JM. Carbon and nitrogen metabolism in the seagrass, Zostera marina L.: Environmental control of enzymes involved in carbon allocation and nitrogen assimilation. J Exp Mare Biol Ecol. 2007;350:216233. DOI: 10.1016/j.jembe.2007.05.034.
  • [2] Lal MA. Plant Physiology, Development and Metabolism. Nitrogen Metabolism. Singapore: Springer; 2018. pp. 425-80. ISBN: 9789811320231. DOI: 10.1007/978-981-13-2023-1_11.
  • [3] Chow FY. Nitrate Assimilation: The Role of In Vitro Nitrate Reductase Assay as Nutritional Predictor. Applied Photosynthesis. New York: IntechOpen; 2016. pp. 105-20. ISBN: 9789535100614. DOI: 10.5772/26947.
  • [4] Lv XF, Yu P, Deng WH, Li YC. Transcriptomic analysis reveals the molecular adaptation to NaCl stress in Zostera marina L. Plant Physiol Bioch. 2018;130:61-8. DOI: 10.1016/j.plaphy.2018.06.022.
  • [5] Olsen JL, Rouzé P, Verhelst B, Lin YC, Bayer T, Collen J, et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature. 2016;530:331-8. DOI: 10.1038/nature16548.
  • [6] Lefebvre A, Thompson CEL, Amos CL. Influence of Zostera Marina canopies on unidirectional flow, hydraulic roughness and sediment movement. Cont Shelf Res. 2010;30:1783-94. DOI: 10.1016/j.csr.2010.08.006.
  • [7] Xu C, Zeng WZ, Wu JW, Huang JS. Effects of different irrigation strategies on soil water, salt, and nitrate nitrogen transport. Ecol Chem Eng S. 2015;22:589-609. DOI: 10.1515/eces-2015-0035.
  • [8] Pooja R, Jaya PY. Acute salt stress differentially modulates nitrate reductase expression in contrasting salt responsive rice cultivars. Protoplasma. 2019;256:1267-78. DOI: 10.1007/s00709-019-01378-y.
  • [9] Baki G, Siefritz F, Man HM, Weiner H, Kaldenhoff R, Kaiser W. Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ. 2000;23(5):515-21. DOI: 10.1046/j.1365-3040.2000.00568.x.
  • [10] Correia MJ, Fonseca F, Azedo-Silva J, Dias C, David MM, Barrote I, et al. Effects of water deficit on the activity of nitrate reductase and content of sugars, nitrate and free amino acids in the leaves and roots of sunflower and white lupin plants growing under two nutrient supply regimes. Physiol Plant. 2005;124(1):61-70. DOI: 10.1111/j.1399-3054.2005.00486.x.
  • [11] Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Muna BG, et al. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot. 2019;161:120-33. DOI: 10.1016/j.envexpbot.2019.02.003.
  • [12] Crawford NM. Nitrate: Nutrient and signal for plant growth. The Plant Cell Online. 1995;7:859-68. DOI: 10.1105/tpc.7.7.859.
  • [13] Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot. 2002;53:103-10. DOI: 10.1093/jexbot/53.366.103.
  • [14] Kester DR, Duedall IW, Connors DN, Pytkowicz RM. Preparation of artificial seawater. Limnol Oceanogr. 1967;12:176-9. DOI: 10.4319/lo.1967.12.1.0176.
  • [15] Hiscox JD, Israelstam GF. A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Plant Pathol. 1979;57:1332-4. DOI: 10.1139/b79-163.
  • [16] Swislowski P, Rajfur M, Waclawek M. Influence of heavy metal concentration on chlorophyll content in Pleurozium schreberi mosses. Ecol Chem Eng S. 2020;27:591-601. DOI: 10.2478/eces-2020-0037.
  • [17] Azamal H. Growth characteristics, physiological and metabolic responses of teak (Tectona Grandis Linn. f.) clones differing in rejuvenation capacity subjected to drought stress. Silvae Genet. 2010;59:124-36. DOI: 10.1515/sg-2010-0015.
  • [18] Ábrahám E, Hourton-Cabassa C, Erdei L, Szabados L. Methods for determination of proline in plants. Methods Mol Biol. 2015;639:317-31. DOI: 10.1007/978-1-60761-702-0_20.
  • [19] Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604-11. DOI: 10.1007/s004250050524.
  • [20] Zhang HY, Jiang YN, He ZY, Ma M. Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol. 2005;162:977-84. DOI: 10.1016/j.jplph.2004.10.001.
  • [21] Zhao G, Zhao Y, Lou W, Su JC, Wei SQ, Yang XM, et al. Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale. 2019;11:10511-23. DOI: 10.1039/C8NR10514F.
  • [22] Wang H, Huang J, Bi YR. Nitrate reductase-dependent nitric oxide production is involved in aluminum tolerance in red kidney bean roots. Plant Sci. 2010;179:281-8. DOI: 10.1016/j.plantsci.2010.05.014.
  • [23] Rao LVM, Rajasekhar VK, Sopory SK, Sipra GM. Phytochrome regulation of nitrite reductase - a chloroplast enzyme - in etiolated maize leaves. Plant and Cell Physiol. 1981;22:577-82. DOI: 10.1094/Phyto-71-1225.
  • [24] Pragya M, Ajay J, Teruhiro T, Yoshito T, Manisha N, Nisha S, et al. Heterologous expression of Serine Hydroxymethyltransferase-3 from rice confers tolerance to salinity stress in E. coli and Arabidopsis. Front Plant Sci. 2019;10:Article 217. DOI: 10.3389/fpls.2019.00217.
  • [25] Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT. A simple and general method for transferring genes into plants. Science. 1985;227:1229-31. DOI: 10.1126/science.227.4691.1229.
  • [26] Wu D, Ji J, Wang G, Guan C, Jin C. LchERF, a novel ethylene - responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco. Plant Cell Rep. 2014;33:2033-45. DOI: 10.1007/s00299-014-1678-4.
  • [27] Zhang Z, Wang Y, Chang L, Zhang T, An J. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. Plant Cell Rep. 2015;35:439-53. DOI: 10.1007/s00299-015-1895-5.
  • [28] Wang X, Tamiev D, Jagannathan A, DiSpirito AA, Phillips GJ, Hargrove MS. The role of the NADH-dependent nitrite reductase, Nir, from Escherichia coli in fermentative ammonification. Arch Microbiol. 2018;201:519-30. DOI: 10.1007/s00203-018-1590-3.
  • [29] Ozawa K, Kawahigashi H. Positional cloning of the nitrite reductase gene associated with good growth and regeneration ability of calli and establishment of a new selection system for Agrobacterium-mediated transformation in rice (Oryza sativa L.). Plant Sci. 2006;170:384-93. DOI: 10.1016/j.plantsci.2005.09.015.
  • [30] Del Castello F, Nejamkin A, Cassia R, Correa-Aragunde N, Fernández B, Foresi N. The era of nitric oxide in plant biology: Twenty years tying up loose ends. Nitric Oxide. 2019;85:17-27. DOI: 10.1016/j.niox.2019.01.013.
  • [31] Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, et al. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol. 2010;154:810-9. DOI: 10.1104/pp.110.161109.
  • [32] Arora D, Jain P, Singh N, Kaur H, Bhatla SC. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radical Res. 2016;50:291-303. DOI: 10.3109/10715762.2015.1118473.
  • [33] Fancy NN, Bahlmann AK, Loake GJ. Nitric oxide function in plant abiotic stress. Plant Cell Environ. 2017;40:462-72. DOI: 10.1111/pce.12707.
  • [34] Gadelha CG, Miranda RS, Alencar NLM, Costa JH, Prisco JT, Gomes-Filhoa E. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J Plant Physiol. 2017;212:69-79. DOI: 10.1016/j.jplph.2017.02.005.
  • [35] Mur LAJ, Julien M, Stefan P, Simona MC, Novikova GV, Michael AH, et al. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants. 2012;5:pls052. DOI: 10.1093/aobpla/pls052.
  • [36] Chen G, Fan PS, Feng WM, Guan AQ, Lu YY, Wan YL. Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Russian J Plant Physiol. 2017;64:116-23. DOI: 10.1134/S1021443717010046.
  • [37] Mohammad AA, Agarwal RM. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Bioch. 2017;115:449-60. DOI: 10.1016/j.plaphy.2017.04.017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-694901ff-ae10-44e8-a021-7a52d2eb83c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.