PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved flotation of auriferous arsenopyrite by using a novel mixed collector in weakly alkaline pulp

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of using a mixed collector is to increase both flotation efficiency and selectivity. The mixed collector of potassium isopentyldithiocarbonate and N-dodecyl mercaptan exhibits high efficiency for the flotation of auriferous arsenopyrite, and the 2:1 mixing mass ratio of potassium isopentyldithiocarbonate and N-dodecyl mercaptan is preferred. Batch flotation tests indicate that a concentrate with the grade of 47.58 g/Mg Au and the recovery of 86.45% Au is achieved by using the mixed potassium isopentyldithiocarbonate/N-dodecyl mercaptan in weakly alkaline pulp. The collector mixture potassium isopentyldithiocarbonate + N-dodecyl mercaptan has greater adsorption density on the arsenopyrite surface than other conventional mixed collectors. The mixed potassium isopentyldithiocarbonate/N-dodecyl mercaptan can adsorb onto the arsenopyrite surface by intense chemisorptions, and the Sulfur-Iron chemical complexation is considered as the main adsorption mode. This is the reason why mixed potassium isopentyldithiocarbonate and N-dodecyl mercaptan collector can improve the flotation efficiency of auriferous sulfides.
Słowa kluczowe
Rocznik
Strony
996--1004
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, Sichuan, China
autor
  • Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, Sichuan, China
  • School of Minerals Processing and Bio-engineering, Central South University, Changsha 410083, Hunan, China
autor
  • Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, Sichuan, China
autor
  • Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, Sichuan, China
autor
  • School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
  • School of Minerals Processing and Bio-engineering, Central South University, Changsha 410083, Hunan, China
autor
  • School of Minerals Processing and Bio-engineering, Central South University, Changsha 410083, Hunan, China
autor
  • School of Minerals Processing and Bio-engineering, Central South University, Changsha 410083, Hunan, China
Bibliografia
  • CHAIPRAPAT, S., WONGCHANA, S., LOYKULNANT, S., KONGKAEW, C., CHARNNOK, B., 2015. Evaluating sulfuric acid reduction, substitution, and recovery to improve environmental performance and biogas productivity in rubber latex industry. Process Safety and Environmental Protection, 94, 420-429.
  • CHANTURIYA, V. A., FEDOROV, A. A., MATVEYEVA, T. N., NEDOSEKINA, T. V., Ivanova, T. A., 2003. Theoretical aspects of gold bearing sulfides selective flotation. Proceedings of the 22nd IMPC.
  • CHEN, J.H., LIANG, M.L., LAN, L.H., 2010. Depression effect of azo organic depressants on sulphide minerals. The Chinese Journal of Nonferrous Metals, 20(11), 2239-2247.
  • DING, Q. F., JIANG, S. Y., SUN, F. Y., QIAN, Y., WANG, G., 2013. Origin of the Dachang gold deposit, NW China: constraints from H, O, S, and Pb isotope data. International Geology Review, 55(15), 1885-1901.
  • DUNNE, R., 2016. Flotation of gold and gold-bearing ores. In Gold Ore Processing (pp. 315-338). Elsevier.
  • DYAR, M. D., Gunter, M. E., Tasa, D., 2008. Mineralogy and optical mineralogy. Chantilly, VA: Mineralogical Society of America.
  • FENG, B., PENG, J., ZHANG, W., LUO, G., WANG, H., 2018. Removal behavior of slime from pentlandite surfaces and its effect on flotation. Min. Eng., 125, 150-154.
  • FENG, B., ZHANG, W., GUO, Y., WANG, T., LUO, G., WANG, H., HE, G., 2019. The flotation separation of galena and pyrite using serpentine as depressant. Powder Technol., 342, 486-490.
  • GAO, Z.Y., SUN, Y., HU, Y.H., 2014. Mineral cleavage nature and surface energy: Anisotropic surface broken bonds consideration. Transactions of Nonferrous Metals Society of China, 24(9), 2930-2937.
  • GARDNER, J. R., WOODS, R., 1974. Electrochemical investigation of contact angle and of flotation in the presence of alkylxanthates. I. Platinum and gold surfaces. Australian Journal of chemistry, 27(10), 2139-2148.
  • JIAO F., 2013. Fundamental research on the efficient separation of complex copper·-zinc sulfide ore by floatation. Chang sha: Central South University, China.
  • JIAO F., WU J., QIN W., WANG X., LIU R., 2016. Interactions of tert dodecyl mercaptan with sphalerite and effects on its flotation behavior. Colloids and Surfaces A-Physicochemical and Engineering Aspects; 506: 104-113.
  • KHUMMALAI, N., BOONAMNAYVITAYA, V., 2005. Suppression of arsenopyrite surface oxidation by sol-gel coatings. Journal of bioscience and bioengineering, 99(3), 277-284.
  • LI, C.W., GAO, Z.Y., 2018. Tune surface physicochemical property of fluorite particles by regulating the exposure degree of crystal surfaces. Minerals Engineering, 128, 123-132.
  • LU, D.F., HU, Y.H., LI, Q., YU, S.L., JIANG, T., SUN, W., WANG, Y.H., 2016. Improving the recovery of fine auriferous pyrite using iso-amylxanthate and its isomeride. Minerals Engineering, 92, 57-62.
  • LU, J.W., TONG, Z.Y., YUAN, Z.T., LI, L.X., 2019. Investigation on flotation separation of chalcopyrite from arsenopyrite with a novel collector: N-Butoxycarbonyl-O-Isobutyl Thiocarbamate. Minerals Engineering, 137, 118-123.
  • MISRA, M., RAICHUR, A. M., LAN, A. P., 2003. Improved flotation of arsenopyrite by ultrasonic pretreatment. Mining, Metallurgy & Exploration, 20(2), 93-97.
  • NAGARAJ, D. R., 1997. Development of new flotation chemicals. Transactions of the Indian Institute of Metals (India), 50(5), 355-363.
  • O'CONNOR, C. T., DUNNE, R. C., 1994. The flotation of gold bearing ores—a review. Minerals Engineering, 7(7), 839-849.
  • SUN, W., HAN, H., TAO, H., LIU, R. 2015. Study on the flotation technology and adsorption mechanism of galena–jamesonite separation. International Journal of Mining Science and Technology, 25(1), 53-57.
  • VALDIVIESO, A. L., ESCAMILLA, C. O., SONG, S., BAEZ, I. L., MARTINEZ, I. G. (2003). Adsorption of isopropyl xanthate ions onto arsenopyrite and its effect on flotation. International Journal of Mineral Processing, 69(1-4), 175-184.
  • WANG, P., PAN, Z. L., WENG, L. B., 1982. Systematic mineralogy. Geology Publishing House, Beijing.
  • WANG, Z., PENG, Y., ZHENG, Y.X., DING, W., WANG, J.M., XU, L.H., 2020. Improved flotation of artificial galena using a new catanionic mixture. Minerals Engineering, 148, 106206.
  • XU, L.H., HU, Y.H, DONG, F.Q., GAO, Z.Y., WU, H.Q., WANG, Z., 2014. Anisotropic adsorption of oleate on diasporę and kaolinite crystals: implications for their flotation separation, Applied Surface Science, 321, 331-338.
  • ZHANG, Y.S., ZHAO, H.B., ZHANG, Y.J., LIU, H.W.Q., YIN, H., DENG, J.S., QIU, G.Z., 2020. Interaction mechanism between marmatite and chalcocite in acidic (microbial) environments. Hydrometallurgy, 191, 105217.
  • ZHU, Y. M., 2011. The application of flotation reagent isomeric principle in study of mercaptancollector. Nonferrous Metals (Mineral Processing Section), (2), 57-59. (In Chinese)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69483460-ad8c-46ba-ad74-9c584c08a71e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.