Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The effects of oxygen-containing functional groups on the structure and dynamic properties of water molecules near a lignite surface were investigated through molecular dynamics (MD) simulations. Because of its complex composition and structure, a graphite surface containing hydroxyl, carboxyl, and carbonyl groups was used to represent the lignite surface model. According to X-ray photoelectron spectroscopic (XPS) results, the composing proportion of hydroxyl, carbonyl and carboxyl is 21:13:6. The density profiles of oxygen and hydrogen atoms indicate that the brown coal surface characteristics influence the structural and dynamic properties of water molecules. The interfacial water is much more ordered than bulk water. The results of the radial distribution functions, mean square displacements, and local self-diffusion coefficients for the water molecules in the vicinity of three oxygen-containing functional groups confirmed that carboxyl groups are the preferential adsorption sites.
Rocznik
Tom
Strony
10--20
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Bibliografia
- ALLARDICE, D., EVANS, D., 1971. The-brown coal/water system: Part 2. Water sorption isotherms on bed-moist Yallourn brown coal. Fuel. 50, 236-253.
- ARGYRIS, D., COLE, D. R., STRIOLO, A., 2009. Hydration structure on crystalline silica substrates. Langmuir. 25, 8025-8035.
- ARGYRIS, D., TUMMALA, N. R., STRIOLO, A., COLE, D. R., 2008. Molecular Structure and dynamics in thin water films at the silica and graphite surfaces. J. Phys. Chem. C. 112, 13587-13599.
- BERENDSEN, H., GRIGERA, J., STRAATSMA, T., 1987. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269-6271.
- BHATTACHARYYA, K., 1971. The role of sorption of water vapour in the spontaneous heating of coal. Fuel. 50, 367-380.
- BUNTE, S. W., SUN, H., 2000. Molecular modeling of energetic materials: The parameterization and validation of nitrate esters in the COMPASS force field. J. Phys. Chem. B. 104, 2477-2489.
- GAO, Y.S., GAO, Z.Y., SUN, W., YIN, Z.G., WANG, J.J., HU Y.H.,2018. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. J. Colloid Interface Sci., 512, 39-46.
- GAO, Z.Y., LI, C.W., SUN, W., HU, Y.H., 2017. Anisotropic surface properties of calcite: A consideration of surface broken bonds. Colloid. Surface. A., 520, 53-61.
- GAO, Y.S., GAO, Z.Y., SUN, W., HU, Y.H., 2016 a. Selective flotation of scheelite from calcite: A novel reagent scheme, International Journal of Mineral Processing, 154,10-15.
- GAO, Z.Y., GAO, Y.S., ZHU, Y.Y., HU, Y.H., SUN, W., 2016 b. Selective flotation of calcite from fluorite: a novel reagent schedule. Minerals, 6 (4), 114.
- HE, M., ZHANG, W., CAO, X., YOU, X., LI, L., 2018. Adsorption behavior of surfactant on lignite surface: A comparative experimental and molecular dynamics simulation study. Int. J. Mol. Sci. 19, 437.
- LARSEN, J. W., BASKAR, A. J., 1987. Hydrogen bonds from a subbituminous coal to sorbed solvents. An infrared study. Energ. Fuel. 1, 230-232.
- LI, C., GAO Z., 2017. Effect of grinding media on the surface property and flotation behavior of scheelite particles. Powder Technol, 322, 386-392.
- LIU, H. T., ISHIZUKA, T., TAKANOHASHI, T., IINO, M., 1993. Effect of TCNE addition on the extraction of coals and solubility of coal extracts. Energ. Fuel. 7, 1108-1111.
- LIU, W., XU, S., ZHAO, X., YUAN, G., MIMURA, H., 2013. Adsorption mechanism of chlorides on carbon nanotubes based on first-principles calculations. Chem. Phys. Lett. 580, 94-98.
- LIU, X., LIU, S., FAN, M., ZHANG, L., 2017. Decrease of hydrophilicity of lignite using CTAB: Effects of adsorption differences of surfactant onto mineral composition and functional groups. Fuel. 197, 474-481.
- LYU, X., YOU, X., HE, M., ZHANG, W., WEI, H., LI, L., HE, Q., 2018. Adsorption and molecular dynamics simulations of nonionic surfactant on the low rank coal surface. Fuel. 211, 529-534.
- MCQUAID, M. J., SUN, H., RIGBY, D., 2004. Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains. J. Comput. Chem. 25, 61-71.
- MIYAKE, M., STOCK, L. M., 1988. Coal solubilization. Factors governing successful solubilization through C-alkylation. Energ. Fuel. 2, 815-818.
- MUKHERJEE, S., BORTHAKUR, P. C., 2004. Demineralization of subbituminous high sulphur coal using mineral acids. Fuel Process. Technol. 85, 157-164.
- NISHINO, J., 2001. Adsorption of water vapor and carbon dioxide at carboxylic functional groups on the surface of coal. Fuel. 80, 757-764.
- NORINAGA, K., KUMAGAI, H., HAYASHI, J.-I., CHIBA, T., 1998. Classification of water sorbed in coal on the basis of congelation characteristics. Energ. Fuel. 12, 574-579.
- OSMAN, H., JANGAM, S., LEASE, J., MUJUMDAR, A. S., 2011. Drying of low-rank coal (LRC)—a review of recent patents and innovations. Drying Technol. 29, 1763-1783.
- PIETRZAK, R., WACHOWSKA, H., 2006. The influence of oxidation with HNO3 on the surface composition of high-sulphur coals: XPS study. Fuel Process. Technol. 87, 1021-1029.
- QUINGA, E. M., LARSEN, J. W., 1987. Noncovalent interactions in high-rank coals. Energ. Fuel. 1, 300-304.
- SHIH, C. J., LIN, S., SHARMA, R., STRANO, M. S., BLANKSCHTEIN, D., 2012. Understanding the pH-dependent behavior of graphene oxide aqueous solutions: A comparative experimental and molecular dynamics simulation study. Langmuir. 28, 235-241.
- SUN, H., REN, P., FRIED, J. R., 1998. The COMPASS force field: parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 8, 229-246.
- TAO, C., FENG, H., ZHOU, J., LV, L., LU, X., 2009. Molecular simulation of oxygen adsorption and diffusion in polypropylene. Acta Phys-Chim. Sin. 25, 1373-1378.
- TIAN, B., QIAO, Y. Y., TIAN, Y. Y., LIU, Q., 2016a. Investigation on the effect of particle size and heating rate on pyrolysis characteristics of a bituminous coal by TG–FTIR. J. Anal. Appl. Pyrolysis. 121, 376-386.
- TIAN, B., QIAO, Y. Y., TIAN, Y. Y., XIE, K. C., LIU, Q., ZHOU, H. F., 2016b. FTIR study on structural changes of different–rank coals caused by single/multiple extraction with cyclohexanone and NMP/CS2 mixed solvent. Fuel Process. Technol. 154, 210-218.
- TIAN, M., GAO, Z., HAN, H., SUN, W., HU, Y., 2017. Improved flotation separation of cassiterite from calcite using a mixture of lead (II) ion / benzohydroxamic acid as collector and carboxymethyl cellulose as depressant. Miner Eng, 113, 68-70.
- TUMMALA, N. R., SHI, L., STRIOLO, A., 2011. Molecular dynamics simulations of surfactants at the silica–water interface: Anionic vs nonionic headgroups. J. Colloid Interface Sci. 362, 135-143.
- VU, T., CHAFFEE, A., YAROVSKY, I., 2002. Investigation of lignin-water interactions by molecular simulation. Mol. Simulat. 28, 981-991.
- WANG J., GAO Z., GAO Y., HU Y., SUN W, 2016. Flotation separation of scheelite from calcite using mixed cationic/anionic collectors. Miner Eng, 98, 261-263.
- WENDER, I., 2006. Catalytic synthesis of chemicals from coal. Catal. Rev. 14, 97-129.
- WILLSON, W. G., WALSH, D., IRWINC, W., 1997. Overview of low-rank coal (LRC) drying. Coal Prep. 18, 1-15.
- WU, J., LIU, J., YUAN, S., WANG, Z., ZHOU, J., CEN, K., 2016. Theoretical investigation of noncovalent interactions between low-rank coal and water. Energ. Fuel. 30, 7118-7124.
- YANG, J., REN, Y., TIAN, A., SUN, H., 2000. COMPASS force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2, in liquid phases. J. Phys. Chem. B. 104, 4951-4957.
- YOU, X., HE, M., ZHANG, W., WEI, H., HE, Q., LYU, X., LI, L., 2018. Molecular dynamics simulations and contact angle of surfactant at the coal–water interface. Mol. Simulat. 44, 722-727.
- YOU, X., LI, L., LIU, J., WU, L., HE, M., LYU, X., 2017. Investigation of particle collection and flotation kinetics within the Jameson cell downcomer. Powder Technol. 310, 221-227.
- ZHANG, H., SHI, H., CHEN, J., ZHAO, K., WANG, L., HAO, Y., 2016. Elemental mercury removal from syngas at high-temperature using activated char pyrolyzed from biomass and lignite. Korean J. Chem. Eng. 33, 3134-3140.
- ZHANG, L., LI, B., XIA, Y., LIU, S., 2017. Wettability modification of Wender lignite by adsorption of dodecyl poly ethoxylated surfactants with different degree of ethoxylation: A molecular dynamics simulation study. J. Mol. Graph. Model. 76, 106-117.
- ZHANG, Z., 2011. Structure and dynamics in brown coal matrix during moisture removal process by molecular dynamics simulation. Mol. Phys. 109, 447-455.
- ZHANG, Z., WANG, C., YAN, K., 2015. Adsorption of collectors on model surface of wiser bituminous coal: a molecular dynamics simulation study. Miner. Eng. 79, 31-39.
- ZHOU, G., QIU, H., ZHANG, Q., XU, M., WANG, J., WANG, G., 2016. Experimental investigation of coal dust wettability based on surface contact angle. J. Chem-NY. 2016, 13-18.
- ZHOU, G., XU, C., CHENG, W., ZHANG, Q., NIE, W., 2015. Effects of oxygen element and oxygen-containing functional groups on surface wettability of coal dust with various metamorphic degrees based on XPS experiment. J. Anal. Methods Chem. 2015, 72-76.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-694775ce-ff61-4b97-ac6d-cc9b7f864ddf