PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Występowanie aflatoksyn w paszach i metody ich dekontaminacji

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Aflatoxins occurance in feed and methods of its decontamination
Języki publikacji
PL
Abstrakty
PL
Rozwój pleśni w paszach niesie ze sobą negatywne skutki związane z obniżeniem jej wartości odżywczej, produkcją mikotoksyn (drugorzędowych toksycznych metabolitów) oraz alergennych spor, które stanowią czynniki ryzyka dla zdrowia zwierząt i ludzi. Do najlepiej poznanych mikotoksyn należą aflatoksyny, syntetyzowane głównie przez szczepy z rodzaju Aspergillus. Obecność aflatoksyn w paszach jest związana z rozwojem pleśni w czasie zbioru oraz podczas przechowywania płodów rolnych, które wykorzystuje się w żywieniu zwierząt. Dodatkowym zagrożeniem jest możliwość biotransformacji aflatoksyny B1 u bydła mlecznego i kumulacja produktów tej reakcji – aflatoksyny M1 w mleku. Od wielu lat prowadzone są badania nad możliwościami ograniczenia zanieczyszczenia mikotoksynami pasz, zarówno na drodze hamowania wzrostu grzybów i tym samym produkcji przez nie mikotoksyn, jak i poprzez detoksykację materiału skażonego na drodze chemicznej, fizycznej i mikrobiologicznej. Ostatnia z wymienionych metod wydaje się metodą najbardziej przydatną do praktycznego wykorzystania w dekontaminacji skażonych surowców roślinnych. Prace badawcze dotyczące biologicznej inaktywacji aflatoksyn i hamowania rozwoju grzybów toksynotwórczych prowadzone są nadal w wąskim zakresie i obejmują przede wszystkim procesy fermentacyjne. Spośród wielu drobnoustrojów wykazujących zdolność do degradacji mikotoksyn szczególnym zainteresowaniem cieszą się bakterie fermentacji mlekowej. Przykładami praktycznego ich zastosowania są preparaty bakteryjne przeznaczone do kiszenia pasz, które zawierają szczepy bakterii o zdolności do obniżenia poziomu aflatoksyn. W pracy zaprezentowano pozytywny wpływ bakteryjnej kultury starterowej na obniżenie zawartości aflatoksyn w kiszonkach z runi łąkowej nawet powyżej 90%, w odniesieniu do jej początkowej zawartości w zielonkach.
EN
Mold growth in feed leads to adverse effects associated with the reduction of its nutritional value, production of mycotoxins (toxic secondary metabolites), and allergenic spores, which are risk factors for animal and human health. Aflatoxins, synthesized especially by strains of the genus Aspergillus are the best known mycotoxins. The presence of aflatoxins in feed is connected with the growth of mold in the time of harvest and during storage of agricultural products, which are used in animal feed. The possibility of biotransformation of aflatoxin B1 in dairy cattle and the accumulation of products of the reaction - the aflatoxin M1 in milk is another threat. For many years there were conducted researches into ways of reducing mycotoxin contamination of feed, either by inhibiting the growth of fungi and thus the production of mycotoxins by them and through detoxification of material contaminated by chemical, physical and microbiological methods. The latter method seems to be the most suitable for practical use in decontamination of contaminated plant material. Researches on the biological inactivation of aflatoxins and inhibition of growth of toxigenic fungi are still held in a narrow range and comprise mainly fermentation processes. Among many microorganisms having the ability to degrade mycotoxins the lactic acid bacteria are of particular interest. Bacterial preparations for silage feed, which include the bacteria strains with the special ability to reduce the level of aflatoxins are examples of their practical application. In this paper there was proved a positive effect of bacterial starter culture on decreasing the content of aflatoxins in meadow grass silages, even above 90% with respect to its initial content.
Twórcy
  • Instytut Biotechnologii Przemysłu Rolno-Spożywczego im. prof. Wacława Dąbrowskiego ul. Rakowiecka 36; 02-532 Warszawa
  • Instytut Biotechnologii Przemysłu Rolno-Spożywczego im. prof. Wacława Dąbrowskiego ul. Rakowiecka 36; 02-532 Warszawa
autor
  • Instytut Technologiczno-Przyrodniczy, Zakład Użytków Zielonych al. Hrabska 3, 05-090 Falenty
Bibliografia
  • [1] Oliveira C.A.F., Bovo F., Corassin C.H., Jager A.V., Reddy K. R.: Recent trends in microbiological decontamination of aflatoxins in food stuffs. W: Aflatoxins - recent advances and future prospects, Razzaghi-Abyaneh M. (Ed.) 2013, http://www.intechopen.com/books/aflatoxins-recent-advancesand-future-prospects/recent-trends-in-microbiological - decontamination-of-aflatoxins-in-foodstuffs.
  • [2] Chełkowski J.: Mikotoksyny, wytwarzające je grzyby i mikotoksykozy. Wydawnictwo SGGW-AR, 1985.
  • [3] Grajewski J.: Mikotoksyny i grzyby pleśniowe. Zagrożenia dla człowieka i zwierząt. Wyd. Uniwersytetu Kazimierza Wielkiego, Bydgoszcz, 2006.
  • [4] IARC International Agency for Research on Cancer- World Health Organization. IARC Monograph on the Evaluation of Carcinogenic Risk to Humans. 2002, 82, 171.
  • [5] Abbas, H. K.: Aflatoxin and food safety. Boca Raton, Taylor and Francis, 2005.
  • [6] Grajewski J., Składanowska B., Drymel W., Szczepaniak K., Twarużek M.: Mikrobiologiczne i mikotoksykologiczne skażenia wybranych surowców i mieszanek pasz treściwych. IV Konferencja Naukowa „Mikotoksyny w żywności i paszach”, 1998, 155-159.
  • [7] Chełkowski J.: Cereal grain. Mycotoxins, fungi and quality in drying and storage. Elsevier, Amsterdam, 1991.
  • [8] Park, D.L., Liang, B.: Perspectives on aflatoxin control for human food and animal feed. Trends Food Sci. Technol., 1993, 41-334.
  • [9] Richard E., Heutte N., Sage L., Pottier D., Bouchart V., Lebailly P.,. Garon D.: Toxigenic fungi and mycotoxins in mature corn silage. Food Chem. Toxicol., 2007, Vol. 45, 2420–2425.
  • [10] Amigot S.L., Fulgueira C.L., Bottai H., Basilico J.C.: New parameters to evaluate forage quality. Postharvest Biol. Technol., 2006, Vol. 41, 215-224.
  • [11] Garon D., Richard E., Sage L., Bouchart V., Pottier D., Lebailly P.: Mycoflora and multimycotoxin detection in corn silage: Experimental study. J. Appl. Food Chem., 2006, Vol. 54, 3479-3484.
  • [12] Elgerbi A.M., Aidoo K. E., Candlish A.A.G., Williams A.G.: Effects of lactic acid bacteria and bifidobacteria on levels of aflatoxin M1 in milk and phosphate bufor. Milchwissenschaft, 2006, Vol. 61(2); 197-199.
  • [13] Line, J.E., Brackett R.E.: Factors affecting aflatoxin B1 removal by Flavobacterium aurantiacum. J. Food Protection, 1995, Vol. 58(1), 91-94.
  • [14] El-Nezami H., Kankaanpää P., Salminen S., Ahokas J.: Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem. Toxicol., 1998a, Vol. 36, 321.
  • [15] Fazeli, M. R., Hajimohammadali, M., Moshkani, A., Samadi, N., Jamalifar, H., Khoshayand, M.R., Pouragahi S., Vaghari E.: Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria. J. Food Protection, 2009, Vol. 72(1), 189-192.
  • [16] Magnusson J., Schnürer J.: Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci. Technol. 2005, Vol. 16, 70-78.
  • [17] Boberg A., Jacobson K., Ström K., Schnürer J.: Metabolite profiles of lactic acid bacteria in grass silage. Appl. Environ. Microbiol., 2007, Vol. 73 (17), 5547-5552.
  • [18] Kabak B., Dobson A.W., Var I.: Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit. Rev. Food Sci. Nutr., 2006, Vol. 46 (8), 593-612.
  • [19] Ogunbanwo S.T., Enitan A.M., Emeya P., Okanlawon B.M.: Influence of lactic acid bacteria on fungal growth and aflatoxin production in ogi, an indigenous fermented food. Adv. Food Sci., 2005, Vol. 27(4), 189-184.
  • [20] Zinedine A., Faid M., Benlemlih M.: In vitro reduction of aflatoxin B1 by strains of lactic acid bacteria isolated from Moroccan sourdough bread. Int. J. Agric. Biol., 2005, Vol. 7(1), 67-70.
  • [21] Gourama H., Bullerman L. B.: Inhibition of growth and aflatoxin production of Aspergillus flavus by Lactobacillus species. J. Food Prot., 1995, Vol. 58, 1249-1256.
  • [22] Gourama H., Bullerman L. B.: Anti-aflatoxigenic activity of Lactobacillus casei pseudoplantarum. Int. J. Food Microbiol., 1997, Vol. 34, 131-143.
  • [23]Wiseman D. W., Marth E.H.: Growth and aflatoxin production by Aspergillus parasiticus when in the presence of Streptococcus lactis. Mycopathologia, 1981, Vol. 73, 49-56.
  • [24] El-Nezami H., Kankaanpää P., Salminen S., Ahokas J.: Physicochemical alterations enhance the ability of dairy strains of lactic acid bacteria to remove aflatoxin from contaminated media, J. Food Sci., 1998b, Vol. 61 (4), 466.
  • [25] El-Nezami H., Salminen S., Ahokas J.: Biological control of food carcinogens with use of Lactobacillus GG. Nutr. Today. Suppl., 1996, Vol. 31 (6), 41.
  • [26] Megalla S.E, Hafez A.H.: Detoxification of aflatoxin B1 acidogenous yoghurt. Mycopathologia, 1982, 77, 89-91.
  • [27] Megalla S.E, Mohran M.A.: Fate of aflatoxin B1 in fermeted dairy products. Mycopathologia, 1984, 88, 27-29
  • [28] Jeremija Lj., Rašić J.L., Škrinjar M., Markov S.: Decrease of aflatoxin B1 in yoghurt and acidified milks. Mycopathologia, 1991, Vol. 113, 117-119.
  • [29] Rašić J.L., Škrinjar M., Markov S.: Decrease of aflatoxin B1 in yoghurt and acidified milk. Mycopathologia, 1996, 113, 117-119.
  • [30] Karunarate A., Wezenberg E., Bullerman L.B.: Inhibition of mold growth and aflatoxin production by Lactobacillus spp. J. Food Prot., 1990, Vol. 53, 230-236.
  • [31] Shahin A.A.M.: Removal of aflatoxin B1 from contamined liquid media by dairy lactic acid bacteria. Int. J. Agric. Biol., 2007, Vol. 9 (1), 71-75.
  • [32] Bueno D.J., Casale C.H., Pizzolitto R.P., Salvano M.A. Oliver G.: Physical adsorption of aflatoxin B1 by lactic acid bacteria and Saccharomyces cerevisiae: a theoretical model. J. Food Prot., 2007, Vol. 70(9), 2148-2154.
  • [33] Sauno E., Kameyama M., Nakajima H., Yale K.: Purification and gene cloning of a dehydrogenase from Lactobacillus brevis that catalyzes a reaction involved in aflatoxin biosynthesis. Biosci. Biotechnol. Biochem., 2008, Vol. 72 (3), 724-734.
  • [34] Prandini A., Tansini G., Sigolo S., Filippi L., Laporta M., Piva G.: On the occurrence of aflatoxin M1 in milk and dairy products, Food Chem. Toxicol., 2009, Vol. 47, 984–991.
  • [35] Van Egmond, H.P.: Aflatoxin M1: occurrence, toxicity, regulation. Mycotoxins in dairy products. Elsevier Applied Science, London and New York, 1989, 11-55.
  • [36] Jarczyk A., Bancewicz E.: Mikotoksyny, aktualny problem. Farmer, 2006, Vol. 24.
  • [37] Kapturowska A.U., Zielińska K.J., Stecka K.M.: Ocena jakości mleka surowego w powiązaniu z jakością kiszonych pasz objętościowych w wybranych gospodarstwach ekologicznych. J. Res. Appl. Agric. Engng, 2012, Vol. 57(3), 194-197.
  • [38] Corassin C.H., Bovo F., Rosim R.E., Oliveira C.A.F.: Efficiency of Saccharomyces and lactic acid bacteria strains to bind aflatoxin M1 in UHT skim milk. Food Control, 2013, Vol. 31, 80-83.
  • [39] Grajewski J.: Możliwości inaktywacji ochratoksyny A w badaniach in vitro oraz in vivo u kurcząt. Wyd. Akademii Bydgoskiej im. Kazimierza Wielkiego, Bydgoszcz, 2003.
  • [40] El-Nezami H.S., Mykkanen H., Kankaanpää P., Salminen S., Ahokas J.: Ability of Lactobacillus and Propionibacerium strains to remove aflatoxin B1 from the chicken duodenum. J. Food Protection, 2000, Vol. 63, 549-552.
  • [41] Kluczek J. P., Kojder A.: Mikotoksyny w zarysie. Wyd. Uczelniane Akademii Techniczno-Rolniczej w Bydgoszczy, Bydgoszcz, 2000.
  • [42] El-Nezami H.S., Polychronaki N.N., Ma J., Zhu H., Ling W., Salminen E.K., Juvonen R.O., Salminen S.J.: Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from Southern china. Am. J. Clinical Nutr., 2006, Vol. 83, 1199-1203.
  • [43] Rouse S., Van Sinderen D.: Bioprotective potential of lactic acid bacteria in malting and brewing. J. Food Protection, 2008, Vol. 71 (8), 1724-1733.
  • [44] Kankaanpää P., Tuomola E., El-Nezami H., Ahokas J., Salminen S. J.: Binding of aflatoxin B1 alters the adhesion properties of Lactobacillus rhamnosus strain GG in Caco-2 model. J. Food Protection, 2000, Vol. 63(3), 412-414.
  • [45] Luchesse R.H., Haerigan W.F.: Growth of and aflatoxin production by Aspergillus parasiticus when in the presence of either Lactococcus lactis or lactic acid and at different initial pH values. J. Appl. Bacteriol., 1990, Vol. 69, 512-519.
  • [46] Byun J.R., Yoon Y.H.: Binding of aflatoxin G1, G2 and B2 by probiotic Lactobacillus spp. Asian Australasian J. Animal Sci., 2003, Vol. 16, (11), 1686-1689, 19.
  • [47] Kung L. Jr. et al..: The effect of treating alfalfla with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for lactating dairy cows, J. Dairy Sci., 2003, Vol. 86 (1), 336-343.
  • [48] Zielińska K., Miecznikowski A.: Kultury starterowe bakterii fermentacji mlekowej do kiszenia pasz - od selekcji szczepów do aplikacji. Monografia, Instytut Biotechnologii Przemysłu Rolno-Spożywczego, Warszawa, 2008.
  • [49] Zielińska K., Suterska A., Miecznikowski A., Stecka K., Kupryś M.: Szczep bakterii Lactobacillus fermentum N. Patent RP PL 211530. 08.06.2009.
  • [50] Podkówka W.: Post. Nauk Roln., 1960, Vol. 3, 55.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-694148e0-69c0-4e71-a853-4ef06605b0df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.