Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This literature survey highlights the possible influences of surface roughness parameters on functional properties of surfaces produced by different finishing operations. The prediction of such functional properties as fatigue, sealing capacity, adhesion, friction, wear and corrosion resistance based on five groups of spatial (S) roughness parameters is overviewed. In contrast, traditional approach based on 2D roughness parameters is provided. Some real 3D surface topographies produced with desired functional properties by finishing cutting and abrasive operations are characterized. This survey confirms the vital role of machined surfaces in the functionality of machine components.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
15--23
Opis fizyczny
Bibliogr. 16 poz., tab., rys.
Twórcy
autor
- Faculty of Mechanical Engineering, Opole University of Technology, Opole, Poland
Bibliografia
- [1] MATHIA T.G., PAWLUS P., WIECZOROWSKI M., 2011, Recent trends in surface metrology, Wear, 271, 494-508.
- [2] JIANG X.J., WHITEHOUSE D.V., 2012, Technological shifts in surface metrology, CIRP-Manufacturing Technology, 61/1, 815-836.
- [3] WHITEHOUSE D.J., 2001, Function maps and the role of surfaces, Int. Journal of Machine Tools & Manufacture, 41, 1847-1861.
- [4] LEACH R., (ed.), 2013, Characterization of areal surface texture, Springer Berlin.
- [5] STOUT K.J., BLUNT L., 2000, Three dimensional surface topography, Penton Press, London.
- [6] BURAKOWSKI T., 2013, Areology. Theoretical fundamentals, Publishing of Institute of Exploitation Technology Radom, (in Polish).
- [7] NOVOCIC D., DEWES R.C., ASPINWALL D.K., VOICE W., BOWEN P., 2004, The effect of machined topography and integrity on fatigue life, Int. Journal of Machine Tools & Manufacture, 44, 125-134.
- [8] GRIFFITHS B., 2001, Manufacturing Surface Technology: Surface Integrity & Functional Performance, Butterworth-Heinemann, London.
- [9] SING R., MELKOTE S.N., HASHIMOTO F., 2005, Frictional response of precision finished surfaces in pure sliding, Wear, 258, 1500-1509.
- [10] TAYEBI N., POLYCARPOU A.A., 2004, Modeling the effect of skewness and kurtosis on the static coefficient of rough surfaces, Tribology International, 37, 491-505.
- [11] BRUZZONE A.A.G., COSTA H.L., LONARDO P.M., LUCCA D.A., 2008, Advances in engineered surfaces for functional performance, CIRP-Manufacturing Technology, 57/2, 750-769.
- [12] STACHOWIAK G., PODSIADLO P., 2008, 3-D characterization, optimization, and classification of textured surfaces, Tribology Letters, 32, 13-21.
- [13] ZECCHINO M., 2003, Characterizing surface quality: Why average roughness is not enough, www.veeco.com.
- [14] KUNSTFELD T., HASS W., 2005, Shaft surface manufacturing methods for rotary shaft lip seals, Sealing Technology, 7, 5-9.
- [15] PYTLAK W., 2014, The surface texture of hardened 18CrMo4 steel after turning with plunge feed, Advances in Manufacturing Science and Technology, 38/1, 53-62.
- [16] GRZESIK W., ŻAK K., 2013, Comparison of surface textures produced by finish cutting, abrasive and burnishing operations in terms of their functional properties, Journal of Machine Engineering, 13/2, 46-58.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6940ce78-0f4e-4025-93ce-dcafd7eb484e