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method is much better than the standard visualisa-
tion techniques available in the artificial neural net-
work literature for visualisation of temporal data.
Clearly the method could be equally well used to
other data which contain positional information.

Finally we have applied a second algorithm IK-
ToM to the data and shown that it is the combination
of reservoir plus the projection method which gives
the most powerful results.
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Abstract

In order to realize a system that supports human actions timely, the system must have
a certain model of human actions. Therefore, we propose a modeling method of human
actions. In this method, it is supposed that a person changes his action according to the
situation around him, and the causality between the situation around a person and the
change of a human action is modeled. This causality is expressed by an If-then-Rule
style where a human action and the situation around a human are expressed by a discrete
event and time series data respectively. Moreover, as the necessary function for human
support systems, an estimation method of the next human action and its execution timing
is consisted based on the proposed modeling method. The usefulness of the proposed
modeling and estimation methods is examined through the estimation experiment of next
human action and its execution timing with a radio-controlled vehicle.

1 Introduction

In order to realize a system that supports human
actions timely, the system must be able to recog-
nize the current action and predict the next one. In
general, a human action model is designed for such
systems. The modeling methods of human actions
are classified in the following two types.

1. Modeling method based on the previous knowl-
edge about human actions.

2. Modeling method based on the past human ac-
tion data acquired by sensors.

The former method is useful for the application
that human action patterns can be modeled in ad-

vance such as working processes in a factory or a
building site. However, in many cases, it is dif-
ficult to design an explicit human action model in
advance because human behavior has diversity, en-
vironmental dependency, and individuality. There-
fore, for the application that human action patterns
are not decided in advance, the latter method is
mostly used[1]-[4].

In most conventional modeling methods, hu-
man action patterns are just modeled with obtained
human action data such as walking trajectory, steer-
ing signal and so on[5]-[7]. These methods are use-
ful for applications where human actions are not in-
fluenced by some sort of situation. On the other
hand, it is difficult to apply them for modeling of
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human actions influenced by situation. Okamoto
and Nakauchi[8][9] have proposed modeling meth-
ods of human actions considering the situation.
However, situations considered in these methods
are static one such as scene or location. On the other
hand, we focus on the dynamic situation that varies
momentarily and continuously.

Sekizawa and Inata[10][11] have proposed
modeling methods of the causality between the sit-
uation and human actions which are expressed by
time series data. In these methods, time series
data which express the situation and human actions
are modeled by some linear models to be switched
timely. However, it is difficult to set such parame-
ters as the length of the time series data or the num-
ber of linear models. In addition, the more compli-
cated the human actions or the situation become, the
more difficult it is to maintain the quality of the ac-
quired human models. On the other hand, we aim to
model this causality using sensing time series data
directly in this research.

As the first step, we consider the case that the
sensing data for human actions and the situation are
obtained as discrete data and time series data re-
spectively. Based on this assumption, we have pro-
posed a modeling method of human actions based
on the causality between the situation and human
actions[12]. Moreover, in order to realize a sys-
tem that supports human actions timely, an esti-
mation method of the next human action also have
been proposed based on the proposed human action
model[13]. In these methods, however, the tempo-
ral information of the time series data on the situa-
tion was not considered. According to this reason,
it was difficult to estimate the execution timing of
the next human action based on the change in the
temporal information of the situation. In this paper,
we propose a modeling method of human actions
considering the spatial and temporal information of
the time series data which expresses the situation.
Moreover, an early estimation method of the next
human action and its execution timing is also pro-
posed with the proposed model.

2 Modeling Method of Human Ac-
tions

2.1 Outline

We can suppose that a person changes his ac-
tion according to the change of the situation around
a person(which is described as just ”situation” be-
low). This causality between the situation and the
change of his action is modeled in this research.
Here, when it is assumed that the next human ac-
tion depends on a current one and the situation, this
causality can be described by a If-Then-Rule style
as following. In this paper, it is called as a human
action rule.

IF {Current action, Situation}T HEN{Next action}

It is assumed that human action and the situation
are observed with various kinds of sensors. Here,
human actions are described as discrete data ex-
pressed by O = {o1,o2, · · · ,oM}, and the situation
is described as n dimensional time series data ex-
pressed by Xn = {xn(t),xn(t +1), · · · ,xn(t + �)}. M
is the number of the action categories, xn(t) is a
sensing signal with n dimension at time t, and � is
the length of a time series data. In this method, the
reproduced causality with the above expression is
extracted from the stored data which consist of hu-
man actions and the situation data obtained during
the prolonged observation of a person. Therefore,
the situation and human actions are subject to the
following conditions.

– The situation and human actions are able to be
measured with sensors.

– The causality between the situation and a hu-
man action has the statistically significant cor-
relation.

Fig.1 shows the propose human action model.
In this research, a human action rule is trying to
be described directly using the sensing signal as
much as possible. However, the human judgment
of the situation has the temporal and spatial ambi-
guity. In order to consider these redundancy of the
time series data which express the situation, these
data are modeled by a Left-to-Right Hidden Markov
Model(HMM)as Fig.1 shows. Therefore, a human
action rule is described as Eq.(1).
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IF {ocurrent , HMM(Xn)} T HEN {onext} (1)
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Figure 1. The propose human action model

Various kinds of human action rules are ob-
tained depending on the combination of the situa-
tion and the change of human actions. Therefore, a
set of obtained human action rules is regarded as a
human action model as Fig.1 shows.

2.2 Procedures of human action modeling

A set of human action rules is generated through
the following three steps as Fig.2 shows.

Step.1 Segmentation and classification of the
stored data based on the human action
data.

Step.2 Reclassification of the segmented data
based on the situation data.

(i) Classification based on the spatial
similarity.

(ii) Extraction of the part which con-
tributes to the next hu-
man action induction.

(iii) Classification based on the temporal
similarity.

Step.3 Modeling of the situation by HMM and
generation of human action rules.

These processes are detailed in the following.

No2.jpg

Figure 2. Procedures of human action modeling

(Step.1) Segmentation and classification of the
stored data based on the human ac-
tion data

First of all, the stored data which consists of hu-
man actions and the situation data are segmented
into parts based on the change of human action as
the top figure in Fig.2 shows. Thus, a set of the
combination data(AS-data) is obtained, which con-
sists of the discrete data(A-data) and the time series
data(S-data) to express the human action change
and the situation respectively. Then, the set of AS-
data is classified into some groups based on the A-
data as Fig.2(Step.1) shows.

(Step.2) Reclassification of the segmented data
based on the situation data

In this step, a set of AS-data which has the
same A-data is reclassified based on the S-data as
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Fig.2(Step.2) shows. S-data has the spatial and tem-
poral patterns. The spatial pattern means the differ-
ence in the waveform of the time series data. On
the other hand, the temporal pattern means the dif-
ference in the changing velocity of one. In con-
ventional researches about human action modeling,
there are some examples that consider the spatial
pattern. However, there are few examples that ex-
plicitly consider both patterns. This is because these
action models are mainly used to recognize the only
type of human actions, which means the system rec-
ognized all actions as the same even if each action
has a different temporal pattern. However, when a
system offers the supports to be synchronized with
human actions like cooperative works, the human
action model must be able to recognize not only
the spatial information but also the temporal one
like the timing on human actions. For this reason,
the classification of spatial and temporal patterns
is executed. Although most classification methods
of time series data are based on the Continuous
Dynamical Programming Method or HMM, these
methods cannot evaluate the temporal and spatial
patterns separately because of the comprehensive
evaluations. Therefore, this study provides the clas-
sification method which can separate the temporal
patterns based on the each similarity.

Moreover, the time series data which expresses
the S-data may contain the part which does not con-
tribute to the next human action induction. For ex-
ample, when a person drives a car on the straight
road, the situation on the straight road does not con-
tribute to his next action around a curve after the
straight road. This means that the situation on the
straight road does not have the causality relation-
ship to the change of human action around the curve
after the straight road. According to this reason, it is
executed to extract the part to contribute to the next
human action from S-data. The followings detail
these processes.

No3.jpg

Figure 3. Slope constraint of CDP

-(i) Classification based on the spatial similarity

First of all, a set of AS-data which has the
same A-data is classified based on the spatial sim-
ilarity of the S-data. Here, CDP(Continuous Dy-
namic Programming[14][15]) with the slope con-
straint shown in Fig.3 is applied to evaluate the only
spatial similarity between two time series data re-
spectively the S-data express. One S-data is arbi-
trarily chosen as a standard data in CDP, and the
others are treated as compared data as Fig.4(Step.2-
i) shows. Then, the spatial similarity between the
standard data and the compared data is evaluated
continuously from the end to the start. This is be-
cause it is assumed that the sensing data just before
the action change mainly contributes to the next ac-
tion induction. If the situation expressed by the
compared data is spatially different from the one
expressed by the standard data, the similarity be-
tween the two data will be calculated low immedi-
ately. Therefore, the period for the spatial similarity
evaluation is set from the end of the data, and the
spatial similarity in this period is calculated. When
the calculated value is lower than the threshold, the
compared data is regarded to be a spatially different
pattern from the standard one.

-(ii) Extraction of the part to contribute to the
next human action

Next, the part to contribute to the next action in-
duction is extracted from the compared data which
is regarded to be spatially similar to the standard
data. It is assumed that the end of the S-data mainly
contributes to the next action induction. In addition,
it is supposed that the reproducible part in the S-
data contributes to the next action induction. There-
fore, the similarity evaluation in the previous pro-
cess is continued for the spatially similar pattern.
When the value of the spatial similarity falls below
the previous threshold, the similarity calculation is
terminated, and the partial data in the period is cut
out as Fig.4(Step.2-ii) shows.

-(iii) Classification based on the temporal simi-
larity

Finally, the compared data to be cut out in the
Step.2-(ii) is classified based on the temporal simi-
larity. The temporal pattern of S-data means the dif-
ference of the change velocity of time series data.
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Therefore, it is assumed that the difference of the
length of the time series data is calculated as the
temporal similarity. When this similarity is lower
than the threshold, the compared data is regarded as
a temporally similar pattern to the standard data as
Fig.4(Step.2-iii) shows.

No4.jpg

Figure 4. Reclassification and extraction of the
AS-data

A new standard data is chosen from the S-data
which have been spatially and temporally different
from the old one, and the processes from Step.2-(i)
to -(iii) are repeated until all AS data obtained in
Step.1 are reclassified into each pattern of the AS-
data.

(Step.3) Modeling the situation by HMM and
generating human action rules

The AS-data classified in the previous two steps
are used as training data for HMMs. After train-
ing HMMs, they are incorporated into the If-Then-
Rules, and human action rules are obtained as
Fig.2(Step.3) shows. A set of obtained human ac-
tion rules is regarded as a human action model in
this method.

3 Estimation of Next Human Ac-
tion and Its Execution Timing

In order to realize a system to support human
actions timely, the system must be able not only
to recognize the current action and predict the next
one. In this section, it is described how to estimate
the next human action and its timing early based on
the previous human action model.

3.1 Estimation method of next human ac-
tion

It is assumed that a system is obtaining a dis-
crete data and time series data which express the
current human action and the situation respectively
as Fig.5 shows. Now the system chooses action
rules with the same current human action from all
human action rules in the human action model as
Fig.5(Step.1) shows. Then, the system evaluates the
similarity between the time series data which ex-
presses the current situation and the HMMs in the
chosen action rules, and the HMM with the highest
similarity to the current situation(Optimal HMM)
is chosen as Fig.5(Step.2) shows. Note that the Op-
timal HMM is chosen early before the actual ex-
ecution of the next human action. The method to
choose Optimal HMM is described in Section 3.2
in detail. The next human action and its execution
timing are estimated based on the action rule with
Optimal HMM(Optimal rule).

The next human action in the consequent part
of Optimal rule is regarded as its estimation result.
The execution timing of the next human action is
calculated using Optimal HMM and the acquired
time series data. Here, in the proposed modeling
method, a HMM models the time series data that
expresses the situation until execution of the next
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human action. Moreover, in a Left-to-Right HMM,
each state models a partial time series data, and the
whole time series data is described by connecting
all states in order as Fig.6 shows. Therefore, when
the Optimal rule is chosen, the time expressed by
the length of time series data from the current state
to the final one can be regarded as the time until the
execution of the next human action as Fig.6 shows.
This time is called as Estimated idle time in this re-
search, and it can be assumed that the next action
will be executed after Estimated idle time passes
from the current time. Estimated idle time is cal-
culated by the following equations(2)-(4).

Ksi =
1

1−asi,si

(2)

Lsis j =
j

∑
n=i

Ksi (3)

Âsx = LsxsM −Fsx (4)

Ksi : length of the time series data on the i-th
state si

asisi : transition probability from si to si

Lsis j : length of the time series data from si to s j

Âsx : Estimated idle time

x : current state

M : final state

Fsx : the elapsed time since current state tran-
sited sx

No5.jpg

Figure 5. Choice of Optimal rule

No6.jpg

Figure 6. Estimation method of execution timing
of next action

3.2 The method to choose the optimal
HMM

In the previous estimation method, the similar-
ity is evaluated between the time series data ex-
pressed by a current situation and a HMM in or-
der to choose the optimal rule. Described in 2.2
Section, the time series data expressed by a current
situation have spatial and temporal patterns. There-
fore, it is necessary to evaluate both similarities.

The spatial similarity is evaluated based on End
State Free Continuous Viterbi Algorithm(CVA).
This method has been proposed as a real-time
recognition method of time series data with a
HMM. The optimal state transition sequences in a
HMM is estimated when a sensing data is input to
the HMM continuously. Then, the similarity is eval-
uated between the input time series data and the par-
tial time series data expressed by the state transition
sequences from the initial state to an arbitrary one in
the HMM. Therefore, the Optimal HMM is chosen
early.
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sited sx
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Figure 5. Choice of Optimal rule
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Figure 6. Estimation method of execution timing
of next action

3.2 The method to choose the optimal
HMM

In the previous estimation method, the similar-
ity is evaluated between the time series data ex-
pressed by a current situation and a HMM in or-
der to choose the optimal rule. Described in 2.2
Section, the time series data expressed by a current
situation have spatial and temporal patterns. There-
fore, it is necessary to evaluate both similarities.

The spatial similarity is evaluated based on End
State Free Continuous Viterbi Algorithm(CVA).
This method has been proposed as a real-time
recognition method of time series data with a
HMM. The optimal state transition sequences in a
HMM is estimated when a sensing data is input to
the HMM continuously. Then, the similarity is eval-
uated between the input time series data and the par-
tial time series data expressed by the state transition
sequences from the initial state to an arbitrary one in
the HMM. Therefore, the Optimal HMM is chosen
early.
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When the time series data which expresses the
current situation is input to the HMMs, the HMMs
with higher likelihoods calculated by CVA than a
preset threshold are chosen. These HMMs are re-
garded to be spatially similar to the input current
situation. The threshold is set based on the calcu-
lated likelihood with training data of a HMM by the
following equation.

T (i) = Lave(i)−ρ∗Ldev(i) (5)

The parameter T (i) is the threshold for the
HMM in the i-th action rule. Lave(i) is the aver-
age of likelihoods for the data used for the HMM
training. Ldev(i) is the deviation of likelihoods. ρ is
the weight for Ldev(i), which is decided by a system
designer.

In order to choose the Optimal HMM early, the
similarity between the time series data of the cur-
rent situation and a HMM is evaluated by match-
ing the time series data of the current situation to
the partial time series data from the initial state to
a decided one in the HMM. This decided state is
called Decision state in this paper. In the Step.2,
the HMMs where the current state passes Decision
state are chosen from among the HMMs chosen by
the previous step. Decision state is decided through
the learning based on the estimation result of the
next human actions with training data. The learn-
ing method is described below. At first, the initial
value of Decision state is given to a HMM in each
action rule. Then, the estimation of the next human
action is performed for training data based on the
proposed method described in Section 3.1. When a
wrong action is output as the estimation result, De-
cision state shifts to the next one. The learning is
terminated when Decision states for all HMMs are
not updated. The initial number of Decision state is
2 in this paper.

After the spatial similarity is evaluated, the tem-
poral similarity is evaluated. In this method, we as-
sume that the difference of the data length between
the time series data from the initial and current state
in a HMM and input time series data is regarded as
temporal similarity. A HMM is chosen ,whose dif-
ference is the most smallest in the chosen HMMs in
the spatial similarity evaluation. This HMM is re-
garded as the Optimal HMM. Note that the length

of time series data from the initial and current state
in a HMM is calculated Eq.(4) in Section 3.1.

4 Experiment

4.1 Experimental setup

In this paper, human operations of a radio con-
trolled vehicle are modeled as an example of the ap-
plication of the proposed modeling method. Fig.7
shows the experimental setup. S-data and A-data
are obtained while an examinee operates a radio
controlled vehicle in the course as Fig.7(a) shows.
In this experiment, S-data is expressed by the time
series data of the distances of three directions from
the vehicle to the edge of the course as shown
in Fig.7(b). On the other hand, A-data is ex-
pressed by one signal data in three types of the
controller operations, Forward(F), Right turn(R),
and Left turn(L) as Fig.7(c) shows. There are
three types of velocities of the radio controlled ve-
hicle, high(45[cm/s]), medium(30[cm/s]), and low
speed(20[cm/s]). Therefore, S-data which have sev-
eral temporal patterns are obtained.
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Figure 7. Experiment setup

4.2 Generation of human action model

The examinee operated the vehicle total 300
times at all speed conditions in total. The human
action model is acquired with the obtained data
in the experiment based on the proposed model-
ing method. The temporal and spatial thresholds
of similarity of CDP are 5 and 20 respectively. The
number of the state in each HMMs is 10. The pa-
rameter ρ in Eq.(5) is 3. Note that these parame-
ters are determined based on the accuracy of esti-
mation experiment of next action discussed as sec-
tion 4.3. Moreover, the gauss distribution is used
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for the output probability of HMM. The acquired
human action model has 34 action rules( 21 F→R-
rules, 2 R→F-rules, 9 F→L-rules, and 2 L→F-
rules). The many action rules with the same human
action change are obtained. This is because a per-
son performs his own action adjusting the vehicle
position and the timing of the next action accord-
ing to the shape of curve and the vehicle velocity.
This result suggests that human behaviors are very
complicated even if a task seems simple such as the
operation of the radio controlled vehicle in this ex-
periment.

Fig.8 shows the difference between the actual
three direction distance at an action change F→R
and modeled one by a HMM in a F→R-rule. As
this figure shows, it is confirmed that the causality
between an action change F→R and the situation
around a person is appropriately modeled based on
the proposed modeling method. Moreover, com-
paring Fig.8 (a) with Fig.8 (b), the time series data
modeled by F-R rule 2 has the same waveform as
the one modeled by F-R rule 1, but the change ve-
locity is different. Therefore, it is confirmed that
the action rules with several temporal patterns are
acquired based on the proposed modeling method.
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Figure 8. Comparison between the actual situation
and the modeled one by a HMM at F→R

4.3 Discussion of the estimation result of
next human action

The estimation experiments of the next action
and its timing were performed with the acquired hu-
man action model in the previous section. In this

experiment, 300 data of the vehicle operarions were
used as test data. Test data were input to the ac-
quired action model every each frame off-line, and
the next human action and its timing were estimated
based on the estimation method described in sec-
tion 3.1. The estimation of the next human action
was regarded to succeed when the next action in
the input data was the same as estimation result. In
this experiment, Idel time is the time until the actual
next action execution after its estimation result was
obtained. Therefore, the difference between Esti-
mated idle time and Idle time was evaluated for the
execution timing estimation.

In this experiment, estimation accuracy of the
proposed method was compared with the one of the
conventional modeling method proposed in our pre-
vious research referred to [13]. In the conventional
method, unlike the proposed method, the temporal
pattern of the time series data to express the situa-
tion is not considered. The usefulness of consider-
ing the temporal pattern of the situation was exam-
ined by comparing both results.

The estimation result of the next action is shown
in Table 1. Table 1 shows the estimation accuracy
with the conventional and proposed action models.
From the result, the estimation accuracy keeps high
in both cases. Therefore, in the proposed model-
ing method, the causality between the situation and
human action is modeled without deterioration.

Table 1. Estimation result of the next human action

The number estimation success
Change Conventional proposed
of action action model action model
F → R 719/719 719/719
R → F 242/242 242/242
F → L 738/738 738/738
L → F 247/247 247/247

Fig.8 shows the change of likelihood calculated
with a HMM in each action rule until the action in
the input data changes from F to R. The vertical axis
is the likelihood, and the horizontal axis is the frame
number of the input data. The action rules shown in
Fig.8 are top 2 rules in F→R-rules and F→L-rules.
The human action actually changes at 57th frame in
this case. The likelihoods of F→R-rules keep high
until the human action actually changes, while the
likelihoods of F→L-rules fall rapidly at 38th frame.
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next human action

The estimation experiments of the next action
and its timing were performed with the acquired hu-
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the input data was the same as estimation result. In
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method, unlike the proposed method, the temporal
pattern of the time series data to express the situa-
tion is not considered. The usefulness of consider-
ing the temporal pattern of the situation was exam-
ined by comparing both results.

The estimation result of the next action is shown
in Table 1. Table 1 shows the estimation accuracy
with the conventional and proposed action models.
From the result, the estimation accuracy keeps high
in both cases. Therefore, in the proposed model-
ing method, the causality between the situation and
human action is modeled without deterioration.

Table 1. Estimation result of the next human action

The number estimation success
Change Conventional proposed
of action action model action model
F → R 719/719 719/719
R → F 242/242 242/242
F → L 738/738 738/738
L → F 247/247 247/247

Fig.8 shows the change of likelihood calculated
with a HMM in each action rule until the action in
the input data changes from F to R. The vertical axis
is the likelihood, and the horizontal axis is the frame
number of the input data. The action rules shown in
Fig.8 are top 2 rules in F→R-rules and F→L-rules.
The human action actually changes at 57th frame in
this case. The likelihoods of F→R-rules keep high
until the human action actually changes, while the
likelihoods of F→L-rules fall rapidly at 38th frame.
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This is because that the situation data which con-
tribute to the next action R are input to the action
model from 38th frame. The estimation result of the
next action is acquired at 40th frame. These results
show that the system can estimate right actions suc-
cessfully before the human actions actually change
by selecting the Optimal rules.
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Figure 9. The change of likelihood (Forward to
Right)

Fig.10 shows the average and deviation of error
of the Estimated idle time. It is verified that estima-
tion accuracy is improved as Fig.10 shows. This
reason is considered as below. Fig.11 shows the
chosen action rules with HMMs higher likelihoods
than threshold calculated by CVA and the Optimal
rule when a test data input to the proposed action
model. The action rules with several temporal pat-
terns of time series data which express the situa-
tion are chosen by evaluating their likelihoods as
Fig.11 shows. Moreover, the Optimal rule is appro-
priately chosen by evaluating the similarity of tem-
poral pattern of the time series data. On the other
hand, in the conventional modeling method, the ac-
tion rule with the right temporal pattern is confused
with ones which have the same spatial pattern with
different temporal patterns. Then, in order not to
consider the temporal patterns of input data, the es-
timation error increases.
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Figure 10. The error of Estimated idle time
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Figure 11. Comparison of action rules with
different temporal patterns

Here, the estimation accuracy of the execution
timing is discussed. The result of the preparatory
experiment showed that ±0.06[s] error happened
when the examinee pushed a controller button at
a decided timing. Therefore, the error of the esti-
mated idle time includes the redundancy of timing
of the action execution or human judgment. Con-
sidering the results of the preparatory experiment
and the Fig.10, it is verified that the estimation ac-
curacy of the execution timing is adequate in the
proposed method.

Conclusion

We proposed a modeling method of human ac-
tions based on the causality between the situation
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expressed by a time series data and the human ac-
tion expressed by a discrete data. Moreover, an es-
timation method of the next human action and its
execution timing was proposed, which considered
the similarities of spatial and temporal patterns of
the time series data based on the proposed model-
ing method. In this modeling method, human ac-
tion rules were generated which expressed causal-
ities between the human actions and the situation
around a person by If-Then rule styles. In this esti-
mation method, the similarity between an input data
and an action rule was evaluated considering the
spatial and temporal patterns of the time series data
to express the situation. Therefore, the accurate es-
timation of the next human action and its execution
timing could be realized. In this paper, actual hu-
man operations of a radio controlled vehicle were
modeled based on the proposed method. Accord-
ing to the experimental results with the generated
human action model, it was verified that the next
human action and its execution timing could be es-
timated successfully at high accuracy. In addition,
it was also verified that the next human action could
be obtained before the actual human action change
occurred.

For the future work, we will try to apply this
modeling and estimation method to more practical
problems like a driving support system, a machine
operation support system and so on. The proposed
model can estimate the next human action and its
execution timing. Therefore, it is considered that
the proposed method is useful for prevention of hu-
man error and navigation of operation for the driver
and operator by presenting the estimated next hu-
man action and its execution timing. Moreover, a
new modeling method will be tackled, which can
deal with multiple choices of human actions under
the same situation and continuous human actions in
order to expand the range of the application of the
proposed method.
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