PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transient Space-fractional Diffusion with a Power-law Superdiffusivity : Approximate Integral-balance Approach

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on an approximate analytical solution of an initial-boundary value problem of spatial-fractional partial differential diffusion equation with RiemannLiouville fractional derivative in space. The spatial correlation of the superdiffusion coefficient as a power-law has been discussed in cases of fast and slow spatial superdiffusion. Approximate closed form solutions in terms of non-linear similarity variable are based on the integral-balance method and series expansion of the assumed parabolic profile with undefined exponent. The law of the spatial and temporal propagation of the solution was the primary issue and discussed in two cases: fast and slow superdiffussion.
Wydawca
Rocznik
Strony
371--388
Opis fizyczny
Bibliogr. 55 poz., tab., wykr.
Twórcy
autor
  • Department of Chemical Engineering, University of Chemical Technology and Metallurgy, Sofia 1756, 8 Kliment Ohridsky, blvd. Bulgaria
Bibliografia
  • [1] Trujillo J. Fractional models: Sub and super-diffusive, and undifferentiable solutions, In: B. H. V. Topping, G. Montero, and R. Montenegro (Eds). Innovation in Engineering Computational Technology. Sax-Coburg Publ., Stirling, UK, 2006, pp. 371-402. doi: 10.4203/csets,15.18.
  • [2] Nigmatullin RR. The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi (B) Basic Research., 1986; 133 (1): 425-430. doi: 10.1002/pssb.2221330150.
  • [3] Bakunin OG. Diffusion Equations and Turbulent Transport. Plasma Physics Reports. 2003; 29 (11): 955-970. doi: 10.1134/1.1625992.
  • [4] Lenzi MK, Gonalves G, Leitoles DP, Lenzi EK. Approximate solutions to time-fractional models by integral balance approach. In: Cattani C Srivastava, Yang XJ (Eds.). Fractals and Fractional Dynamics, De Gruyter Open, Berlin, 2015, pp. 78-109.
  • [5] Hilfer R. Applications of Fractional Calculus in Physics, World Scientific, 2000, Hackensack, NJ, USA. ISBN: 9814496200, 9789814496209.
  • [6] Yang XJ, Baleanu D, Srivastava HM. Local Fractional Integral Transforms and Their Applications. Academic Press, 2015, London, UK. doi: 10.1016/B978-0-12-804002-7.09994-0.
  • [7] Gomez-Aguilar JF, Lopez-Lopez MG, Alvarado-Martnez VM, Reyes-Reyes J, Adam-Medina M. Modeling diffusive transport with a fractional derivative without singular kernel. Physica A: Statistical Mechanics and its Applications, 2016; 447 (1): 467-481. URL http://dx.doi.org/10.1016/j.physa.2015.12.066.
  • [8] Gomez-Aguilar JF., Miranda-Hernndez M, Lopez-Lopez MG., Alvarado-Martnez VM, Baleanu D. Modeling and simulation of the fractional space-time diffusion equation. Communications in Nonlinear Science and Numerical Simulation, 2016; 30 (l-3): 115-127. URL http://dx.doi.org/10.1016/j.cnsns.2015.06.014.
  • [9] Atangana A. On the new fractional derivative and application to nonlinear Fishers reactiondiffusion equation. Applied Mathematics and Computation, 2016: 273: 948-956. URL http://dx.doi.org/10.1016/j.amc.2015.10.021.
  • [10] Hristov J. Transient Heat Diffusion with a Non-Singular Fading Memory: From the Cattaneo Constitutive Equation with Jeffreys kernel to the Caputo-Fabrizio time-fractional derivative. Thermal science. 2016; 20 (2): 19. doi: 10.2298/TSCI160112019H.
  • [11] Hristov J. Steady-State Heat Conduction in A Medium With Spatial Non-Singular Fading Memory: Derivation of Caputo-Fabrizio space-fractional derivative with Jeffreys kernel and analytical solutions. Thermal science, 2016, 20, in press: doi: 10.2298/TSCI160229115H.
  • [12] Wu GC, Baleanu D, Zeng SD, Deng ZG. Discrete fractional diffusion equation. Nonlinear Dynamics. 2015; 80 (l-2): 281-286. doi: 10.1007/s11071-014-1867-2.
  • [13] Yang XJ, Baleanu D, Srivastava HM. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Applied Mathematics Letters, 2015; 47: 54-60. doi: 10.1016/j.am1.2015.02.024.
  • [14] Luchko Yu, Srivastava HM. The exact solution of certain differential equations of fractional order by using operational calculus. Comp. Math. Appl. 1995; 29 (8): 73-85. doi: 10.1016/0898-1221(95)00031-S.
  • [15] He JH. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comp. Meth. Appl. Mech. Eng., 1998; 167 (l-2): 57-68. doi: 10.1016/S0045-7825(98)00108-X.
  • [16] Molliq RY, Noorani MS M, Hashim I. Variational Iteration Method for Fractional Heat- and Wave-Like Equations. Nonlinear Anal., Real World Appl. 2009; 10 (3): 1854-1869. doi: 10.1016/j.nonrwa.2008.02.026.
  • [17] Nakagawa J, Sakamoto K, Yamamoto M. Overview to mathematical analysis for fractional diffusion equations new mathematical aspects motivated by industrial collaboration. J. Math-for-Indust. 2010; 2 (10): 99-108.
  • [18] Das S, Gupta PK, Ghosh P An approximate analytical solution of Nonlinear Fractional Diffusion Equation. Appl. Math. Model. 2011; 35 (8): 4071-4076. URL http://dx.doi.org/10.1016/j.apm.2011.02.004.
  • [19] Wu GC. Variational iteration method for solving the time-fractional diffusion equations in porous medium. Chin. Phys. B. 2012; 21 (22). Article ID 120504. doi: 10.1088/1674-1056/21/12/120504.
  • [20] Wu GC. Applications of the Variational Iteration Method to Fractional Diffusion Equations: Local versus Nonlocal Ones. Int. Rev. Chem. Eng. 2012; 4 (5): 505-510.
  • [21] Wu GC, Baleanu D. Variational iteration method for fractional calculus - a universal approach by Laplace transform. Advances in Difference Equations. 2013; 2013: 18. doi: 10.1186/1687-1847-2013-18.
  • [22] Liu F, Shen S, Anh V, Turner I. Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J. 2004; 46 (E): 488-504. URL http://dx.doi.org/10.21914/anziamj.v46i0.973.
  • [23] Liu F, Zhuang P, Anh, V, Turner I, Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl Math Comput. 2007; 191 (1): 12-20.
  • [24] Zhuang P, Liu F. Implicit difference approximation for the time fractional diffusion equation. J. Appl Math Comput. 2006; 22 (3):8 7-99.
  • [25] Meerschaert MM, Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math. 2006; 56 (l): 80-90. doi: 10.1016/j.apnum.2005.02.008.
  • [26] Basu TS, Wang H. A fast second-order finite difference method for space-fractional diffusion equations. Int J Numer Anal Mod. 2012; 9 (5): 658-666.
  • [27] Podlubny I. Fractional Differential Equations, Academic Press, New York, 1999. ISBN 0125588402.
  • [28] Ervin V J, Heur N, Roop J. Numerical approximation of a time dependent, nonlinear, spacefractional diffusion equation. SIAM J. Num Anal. 2008; 45 (2): 572-591. doi: 10.1137/050642757.
  • [29] Li CP, Zhao ZG, Chen YQ. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comp. Math. Appl. 2011; 62 (3): 855-875.
  • [30] Sapora A, Corneti P, Carpinteri C. A Diffusion problems on fractional nonlocal media. Centr. Eur. J. Phys. 2013; 11 (10): 1255-1261. doi: 10.2478/s11534-013-0323-0.
  • [31] El-Kady M, El-Sayed SM, Salem HS. El-Gendi nodal Galerkin method for solving linear and nonlinear partial fractional space equations. Int. J. Latest Res. Sci. Technol. 2013; 2 (6): 10-17.
  • [32] Zheng Y, Zhao Z. A fully discrete Galerkin method for a nonlinear space-fractional diffusion equation. Math. Problems in Engineering. 2011; Article 171620, 20 pages, doi: 10.1155/2011/171620.
  • [33] Saadatmandi A, Deghan M. A tau approach for solution of the space fractional diffusion equation. Comp. Math. Appl. 2011; 62 (3): 1135-1142. doi: 10.1016/j.camwa.2011.04.014.
  • [34] Nie N, Huang J, Wang W, Tang Y. Solving spatial-fractional partial differential diffusion equations by spectral method. J. Stat. Comp. Sim. 2014; 84 (6): 1173-1189. URL http://dx.doi.org/10.1080/00949655.2013.803243.
  • [35] Ray SS. A new approach for the application of Adomian decomposition method for the solution of fractional space diffusion equation with insulated ends. Appl. Math. Model. 2008; 202 (2): 544-549. URL http://dx.doi.org/10.1016/j.amc.2008.02.043.
  • [36] Ray SS. Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method. Comp. Nonlinear Sci. Num. Simul., 2009; 14 (4): 1295-1306.
  • [37] Ray SS, Chaudhuri Bera RK. Application of modified decomposition method for the analytical solution of space fractional diffusion equation. Appl. Math. Comput. 2008; 196 (1 ): 294-302. URL http://dx.doi.org/10.1016/j.amc.2007.05.048.
  • [38] Huang F, Liu F. The space-time fractional diffusion equation with Caputo derivatives. J. Appl. Math & Computing. 2005; 19 (1-2): 179-190.
  • [39] Huang F, Liu F. The fundamental solution of the space-time fractional advection-diffusion equation. J Appl. Math & Computing. 2005; 19 (l-2): 339-350. doi: 10.1007/BF02936577.
  • [40] Aguilar JFG, Hernadez MM. Space-time fractional diffusion-advection equation with Caputo derivative. Abstract and Applied Analysis. 2014, Article ID 283019, 8 pages, doi: 10.1155/2014/283019.
  • [41] Saadatmandia A, Dehghan M. A tau approach for solution of the space fractional diffusion equation. Comp. Math. Appl. 2011; 62 (3): 1135-1142. URL http://dx.doi.org/10.1016/j.camwa.2011.04.
  • [42] Hristov J. Integral solutions to transient nonlinear heat (mass) diffusion with a power-law diffusivity: a semi-infinite medium with fixed boundary conditions. Heat Mass Transfer, 2016; 52 (3): 635-655.
  • [43] Goodman TR. Application of Integral Methods to Transient Nonlinear Heat Transfer. In: Irvine TF and Hartnett JP (Eds.), Advances in Heat Transfer, 1 (1964), Academic Press, San Diego, CA, pp. 51-122. doi: 10.1016/S0065-2717(08)70097-2.
  • [44] Hristov J. The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and benchmark exercises. Therm. Sci. 2009; 13 (20): 22-48.
  • [45] Hristov J. Heat-Balance Integral to Fractional (Half-Time) Heat Diffusion Sub-Model. Therm. Sci. 2010; 14 (2): 291-316.
  • [46] Hristov J. Approximate Solutions to Fractional Subdiffusion Equations: The heat-balance integral method. Europ. Phys. J.-ST. 2011; 193 (1): 229-243. doi: 10.1140/epjst/e2011-01394-2.
  • [47] Hristov J. Approximate solutions to time-fractional models by integral balance approach. In: Cattani C Srivastava, Yang XJ (Eds.). Fractals and Fractional Dynamics, De Gruyter Open, Berlin, 2015, pp. 78-109.
  • [48] Hristov J. An approximate solution to the transient space-fractional diffusion equation: Integral-balance approach, optimization problems and analyzes. Thermal Science, 2017, 21, in press, doi: 10.2298/TSCI160113075H.
  • [49] Oldham KB, Spanier J. The fractional Calculus. Academic Press, New York, USA, 1974. ISBN-13: 978-0486450018, 10: 0486450015.
  • [50] Hristov J. Double Integral-Balance Method to the Fractional Subdiffusion Equation: Approximate solutions, optimization problems to be resolved and numerical simulations. J. Vibration and Control, in press. doi: 10.1177/1077546315622773.
  • [51] Langford. The heat balance integral method. Int. J. Heat Mass Transfer, 1973; 16 (12): 2424-2428.
  • [52] Vlad MO, Metzler R, Nonnenmacher TF, Mackey MC. Universality classes for asymptotic behavior of relaxation processes in systems with dynamical disorder: Dynamical generalization of stretched exponentials. Math. Phys. 1966; 37 (5): 2279-2301. URL http://dx.doi.org/10.1063/1.531509.
  • [53] Baumann G., Sudland N, Nonnenmacher TF. Anomalous relaxation and diffusion processes in complex systems. Transp. Theory and Stat Phys, 2000; 29 (1-2): 151-171. URL http://dx.doi.org/10.1080/00411450008205866.
  • [54] Fa KS, Lenzi EK. Time-fractional diffusion equation with time dependent diffusion coefficient. Physica A, 2005, 72: article 011107. doi: 10.1103/PhysRevE.72.011107.
  • [55] Fa KS, Lenzi EK. Power law diffusion coefficient and anomalous diffusion: Analysis of solutions and the first passage time. Physical Review E, 2003, 67: article 061105. doi: 10.1103/PhysRevE.67.061105.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69377a17-7a53-44e0-a8c2-741e28a215a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.