Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of a numerical investigation into tube flanging by extrusion with a moving sleeve. Two cases of the extrusion process are investigated, each described with a different tool kinematics. Effects of flange diameter, gap height and tool motion on the extrusion process are examined. The numerical analysis is performed on 42CrMo4 steel tubes deformed at ambient temperature. Obtained numerical results are then used to determine metal flow patterns and examine force parameters in the extrusion process, as well as to determine a technological window for the investigated method.
Wydawca
Rocznik
Tom
Strony
210--216
Opis fizyczny
Bibliogr. 22 poz., fig., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- 1. Hongchao J., Jinping L., Baoyu W., Xiaobin F., Wenchao X. and Zhenghuan H. A new method for manufacturing hollow valves via cross wedge rolling and forging: Numerical analysis and experiment validation. Journal of Materials Processing Technology, 240, 2017, 1-11.
- 2. Pater Z., Tomczak J. and Bulzak T. Analysis of a cross wedge rolling process for producing drive shafts. The International Journal of Advanced Manufacturing Technology, 94(9-12), 2018, 3075-3083.
- 3. Pater Z., Tomczak J. and Bulzak T. Cavity formation in cross-wedge rolling processes. Journal of Iron and Steel Research International, 26(1), 2019, 1-10.
- 4. Wang Z., Lu J. and Wang Z.R. Numerical and experimental research of the cold upsetting-extruding of tube flanges. Journal of Materials Processing Technology, 110(1), 2001, 28-35.
- 5. Hu X.L. and Wang Z.R. Numerical simulation and experimental study on the multi-step upsetting of a thick and wide flange on the end of a pipe. Journal of Materials Processing Technology, 151(1), 2004, 321-327.
- 6. Samołyk G. Studies on stress and strain state in cold orbital forging a AlMgSi alloy flange pin. Archives of Metallurgy and Materials, 58(4), 2013, 1183-1189.
- 7. Samołyk G., Tomczak J. and Bartnicki J. Cold forming of AlCu4MgSi alloy by orbital forging. Archives of Metallurgy and Materials, 57(1), 2012, 205-209.
- 8. Chan-hee N., Min-cheol L., Jae-geun E., Moo-ho C. and Man-soo J. Finite element analysis model of rotary forging for assembling wheel hub bearing assembly. Procedia Engineering, 81, 2014, 2475-2480.
- 9. Almeida B.P.P., Alves M.L., Rosa P.A.R., Brito A.G. and Martins P.A.F. Expansion and reduction of thin-walled tubes using a die: Experimental and theoretical investigation. International Journal of Machine Tools & Manufacture, 46(12-13), 2006, 1643-1652.
- 10. Alves M.L., Almeida B.P.P., Rosa P.A.R. and Martins P.A.F.. End forming of thin-walled tubes. Journal of Materials Processing Technology, 177(1-3), 2006, 183–187.
- 11. Tomczak J., Bulzak T. and Pater Z. A method for producing hollow shafts by rotary compression using a specially designed forging machine. Archives of Metallurgy and Materials, 60(3), 2015, 1745-1753.
- 12. Tomczak J., Pater Z. and Bulzak T. Forming of hollow shaft forging from titanium alloy Ti6Al4V by means of rotary compression. Archives of Metallurgy and Materials, 60(1), 2015, 419-425.
- 13. Rosa P. A., Rodrigues J. M.C. and Martins P. A.F. Internal inversion of thin-walled tubes using a die: experimental and theoretical investigation. International Journal of Machine Tools & Manufacture, 44(7-8), 2004, 775-784.
- 14. Qiu X. M., He L. H. and Yu X. H. An improved theoretical model of a metal tube under free external inversion. Thin-Walled Structures, 80, 2014, 32-37.
- 15. Gontarz A., Pater Z., Tomczak J. and Winiarski G. Theoretical and experimental research on a method for producing a triangular rosette-shaped flange. Key Engineering Materials, 622-623, 2014, 1166-1172.
- 16. Zhang X., Cheng G. and Zhang H. Numerical investigations on a new type of energy-absorbing structure based on free inversion of tubes. International Journal of Mechanical Sciences, 51(1), 2009, 64-76.
- 17. Umesh C. P., Susanta K. S., Pusparaj D. and Kanhu C. N. Simulation and experimental studies for lateral extrusion of square and pentagonal head from round shaft. International Journal of Research in Engineering and Technology, 2(7), 2013, 56-62.
- 18. Payman A. and Igramotdin A. Finite element simulation of flashless radial extrusion process. Journal of Mechanical and Civil Engineering, 14(4), 2017, 79-83.
- 19. Winiarski G., Gontarz A. and Dziubińska A. The influence of tool geometry on the course of flanges radial extrusion in hollow parts. Archives of Civil and Mechanical Engineering, 17(4), 2017, 986-996.
- 20. Winiarski G., Gontarz A. and Samolyk G. Flange formation in aluminium alloy EN AW 6060 tubes by radial extrusion with the use of a limit ring. Archives of Civil and Mechanical Engineering, 19(4), 2019, 1020-1028.
- 21. Winiarski G. and Gontarz A. Numerical and experimental study of producing two-step flanges by extrusion with a movable sleeve. Archives of Metallurgy and Materials, 62(2), 2017, 495-499.
- 22. Gontarz A. and Winiarski G. Numerical and experimental study of producing flanges on hollow parts by extrusion with a movable sleeve. Archives of Metallurgy and Materials, 60(3), 2015, 1917-1921.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69358f19-ae9f-4ca5-b3ed-5370ab17bf55