PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the magnetic properties of soils in the Cisna-Wetlina Landscape Park

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A magnetic study of 16 samples of topsoil and 2 soil profiles (11 samples) in the area of Cisna-Wetlina Landscape Park was carried out. The whole collection of the samples represents typical Carpathian soils – brown and sour. Magnetic susceptibility, frequency, dependence of magnetic susceptibility, temperature dependence of magnetic susceptibility, thermal decay of saturation, isothermal remanent magnetization, parameters of hysteresis loop and anhysteretic remanent magnetization of the samples were measured in a laboratory. Mass magnetic susceptibility of topsoil specimens is below 40∙10−8 m3 ∙kg−1, which indicates that the investigated area is probably not polluted currently. The study of the samples from two soil profiles reveals a slight enhancement of magnetic susceptibility in the upper horizons, presumably related to natural processes. The temperature dependence of magnetic susceptibility and saturation isothermal remanence of four soil samples show that the presence of iron sulphide minerals (pyrrhotite) and maghemite is associated with hematite. The occurrence of other iron sulphide minerals in the soil is also possible. The saturation isothermal remanence curves do not confirm the presence of magnetite. Studies of the hysteresis loop reveal a significant role of paramagnetics among magnetic minerals occurring in the samples. Hysteresis parameters (coercive force, coercivity of remanence, saturation magnetization, isothermal remanent magnetization) and anhysteretic remanent susceptibility allowed the authors to evaluate the grain size distribution and reveal the presence of pseudo-single domain (PSD) grains.
Wydawca
Rocznik
Strony
7--18
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
  • University of Warsaw, Faculty of Geology; ul. Żwirki i Wigury 93, 02-089 Warsaw, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection; al. A. Mickiewicza 30, 31-871 Krakow, Poland
Bibliografia
  • Boer C.B. de & Dekkers M.J., 1996. Grain-size dependence of the rock magnetic properties for natural maghemite. Geophysical Research Letters, 23, 2815–2818.
  • Day R., Fuller M. & Schmidt V.A., 1977. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 13, 260–267.
  • Dekkers M.J., 1989. Magnetic properties of natural pyrrhotite. II. High- and low-temperature behaviour of Jrs and TRM as function of grain size. Physics of the Earth and Planetary Interiors, 57, 266–283.
  • Dunlop D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc ). 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, vol. 107, no. B3, 2056.
  • Dunlop D.J. & Özdemir Ö., 2007. Magnetizations in Rocks and Minerals. [in:] Schubert G. & Kono M. (eds), Treatise on Geophysics. Vol. 5, Geomagnetism, Academic Press Elsevier Science, 278–331.
  • Evans M.E. & Heller F., 2003. Environmental Magnetism. Principles and Applications of Enviromagnetics. Elsevier Science, USA.
  • Górka-Kostrubiec B., Jeleńska M. & Król E., 2014. Magnetic Signature if Indoor Air Pollution: Household Dust Study. Acta Geophysica, 62, 6, 1478–1503.
  • Grabowska T., 2013. Magnetometria stosowana w badaniach środowiska. Tom 2: Środowiskowe parametry magnetyczne, magnetometria w archeologii, magnetoklimatologia, Wydawnictwa AGH, Kraków.
  • Gucik S., Ślączka A. & Żytko K. (red.), 1973. Przewodnik geologiczny po wschodnich Karpatach fliszowych. Wydawnictwa Geologiczne, Warszawa. Heller F. & Evans M.E., 1995. Loess magnetism. Reviews of Geophysics, 33, 2, 211–240.
  • Jeleńska M., Hasso-Agopsowicz A., Kopcewicz B., Sukhorada A., Tyamina K., Kądziałko-Hofmokl M. & Matviishina Zh., 2004. Magnetic properties of the profiles of polluted and non-polluted soils. A case study from Ukraine. Geophysical Journal International, 159, 1, 104–116.
  • Jeleńska M., Hasso-Agopsowicz A., Kądziałko-Hofmokl M., Sukhorada A., Bondar K. & Matviishina Zh., 2008. Magnetic iron oxides occurring in chernozem soil from Ukraine and Poland as indicators of pedogenic processes. Studia Geophysica et Geodaetica, 52, 2, 255–270.
  • Jeleńska M., Hasso-Agopsowicz A. & Kopcewicz B., 2010. Thermally induced transformation of magnetic minerals in soil based on rock magnetic study and Mössbauer analysis. Physics and the Earth and Planetary Interiors, 179, 3–4, 164–177.
  • Jordanova D., Jordanova N., Lanos P., Petrov P. & Tsacheva T., 2012. Magnetism of outdoor and indoor settled dust and its utilization as tool for revealing the effect of elevated particulate air pollution on cardiovascular mortality. Geochemistry, Geophysics, Geosystems G3 , 13, 8, Q08Z49.
  • Rozporządzenie Ministra Środowiska z dnia 9 września 2002 r. w sprawie standardów jakości gleby oraz standardów jakości ziemi. Dz.U. 2002, nr 165, poz. 1359 [Journal of Laws 2002 No 165, item 1359].
  • Kądziałko-Hofmokl M., 2002. Paleomagnetyzm: badania pola magnetycznego Ziemi w jej przeszłości geologicznej. Publications of the Institute of Geophysics Polish Academy of Sciences, M-25 (347), 89–112.
  • Królikowski L., Kowaliński S. & Trzciński W. (red.), 1986. Album gleb Polski. Państwowe Wydawnictwo Naukowe, Warszawa.
  • Kusza G., 2013. Selected magnetic properties of bottom sediments from the Turawa Lake. Proceeding of ECOpole, 7, 1, 371–376.
  • Lis J. & Pasieczna A., 1995. Atlas geochemiczny Polski. Państwowy Instytut Geologiczny, Warszawa.
  • Liu Q., Deng C., Yu Y., Torrent J., Jackson M.J., Banerjee S.K. & Zhu R., 2005. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese less/palaeosols. Geophysical Journal International, 161, 1, 102–112.
  • Lowrie W., 2007. Fundamentals of Geophysics. University Press, Cambridge.
  • Magiera T., Lis J., Nawrocki J. & Strzyszcz Z., 2002a. Podatność magnetyczna gleb Polski. Instytut Podstaw Inżynierii Środowiska PAN, Zabrze.
  • Magiera T., Strzyszcz Z. & Kostecki M., 2002b. Seasonal changes of magnetic susceptibility in sediments from Lake Żywiec (South Poland). Water, Air and Soil Pollution, 141, 1–4, 55–57.
  • Magiera T. & Strzyszcz Z., 2003. Using of Magnetic Susceptibility as an Ecological Tracer for Preventive and Sanitative Actions in Soil Protection. Mitteilungen der Deutschen Bodenkundlischen Gesellschaft, 102, 2, 781–782.
  • Magiera T., 2004. Wykorzystanie magnetometrii do oceny zanieczyszczenia gleb i osadów jeziornych. Prace i Studia – Polska Akademia Nauk. Instytut Podstaw Inżynierii Środowiska 59, IPIŚ PAN, Zabrze.
  • Magiera T., Kapička A., Petrovský E., Strzyszcz Z., Fialová H. & Rachwał M., 2008. Magnetic anomalies of forest soils in the Upper Silesia-Northern Moravia region. Environmental Pollution, 156, 3, 618–627.
  • Magiera T., Jabłońska M., Strzyszcz Z. & Rachwał M., 2011a. Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmospheric Environment, 45, 25, 4281–4290.
  • Magiera T., Jankowski M., Światoniak M. & Rachwał M., 2011b. Study of forest soils on an area of magnetic and geochemical anomaly in North-eastern Poland. Geoderma, 160, 559–568.
  • Oorschot I.H.M. van, 2001. Chemical distinction between lithogenic and pedogenic iron oxides in environmental magnetism. A search for the perfect solution. Geologia Ultraiectina 208, Universiteit Utrecht.
  • Peters C. & Dekkers M.J., 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Physics and Chemistry of the Earth, 28, 659–667.
  • Rodríguez-Germade I., Mohamed K.J., Rey D., Rubio B. & García Á., 2014. The influence of weather and climate on the reliability of magnetic properties of tree leaves as proxies for air pollution monitoring. Science of the Total Environment, 468–469, 892–902.
  • Sagnotti L., Taddeucci J., Winkler A. & Cavallo A., 2009. Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italy. Geochemistry, Geophysics, Geosystems G3 , 10, 8.
  • Strzyszcz Z., Magiera T. & Heller F., 1996. The influence of industrial immissions on the magnetic susceptibility of soils in upper Silesia. Studia Geophysica et Geodaetica, 40/3, 276–286.
  • Strzyszcz Z. & Magiera T., 2001. Record of industrial pollution in Polish ombrotrophic peat bogs. Physics and Chemistry of the Earth, 26, 11–12, 859–866.
  • Strzyszcz Z. & Rachwał M., 2010. Zastosowanie magnetometrii do monitoringu i oceny ekologicznej gleb na obszarach objętych wpływem emisji przemysłowych. Prace i Studia – Polska Akademia Nauk. Instytut Podstaw Inżynierii Środowiska 78, IPIŚ PAN, Zabrze.
  • Szönyi M., Sagnotti L. & Hirt A.M., 2007. On leaf magnetic homogeneity in particulate matter biomonitoring studies. Geophysical Research Letters, 34, L06306.
  • Wojas A., 2009. Badania podatności magnetycznej gleb miejskich w Krakowie. Geologia – kwartalnik Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, 35, 2/1, 489–496.
  • Wojas A., Rolirat A. & Grabowska T., 2010. Reconnaissance investigations of magnetic susceptibility of subsoil formation in the selected areas in southern Poland. Geologia – kwartalnik Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, 36, 2, 241–262.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6933376b-0b19-468e-91b3-414fef246c40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.