PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies on influence of torch orientation on microstructure, mechanical properties and formability of AA5052 CMT welded blanks

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Generally, in gas metal arc welding (GMAW) high heat input causes drastic changes in the microstructures of weldment (fusion zone and heat affected zone), which in turns affects the performance of the welded blanks during forming operation. The present study focuses on the parametric effects such as welding current, welding speed and torch orientation concerning welding direction on mechanical properties, microstructural characterization and formability of AA5052 Cold metal transfer (CMT) welded blanks (WB’s). Based on the macrostructure images obtained from various trials (trial 19, 20 and 21, which is corresponding to Drag angle of 10°, 90° or Zero angle and Push angle of 10°, respectively) three were selected for further studies. The macrograph, microstructural evaluation, mechanical behavior and forming limit curve (FLC) of the WB’s are examined for the selected parameters and for base metal (BM). The formability of the BM and WB’s are investigated by obtaining FLC using Nakajima test. Of the three different torch orientation concerning welding direction, the WB made with 10° push angle yields the superior mechanical properties such as high tensile strength, increase in hardness and more bending strength than the remaining torch orientations. In addition, total elongation and formability are of concern; drag angle of 10° yields the better result, compared to the other torch orientations.
Słowa kluczowe
Rocznik
Strony
197--218
Opis fizyczny
Bibliogr. 61 poz., fot., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620 015, India
  • Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620 015, India
  • Department of Production Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620 015, India
Bibliografia
  • [1] Mcauley JW. Environ Sci Technol. 2003;37:5414–6.
  • [2] European Aluminium Association (2007) Aluminium in cars. EAA report ‘Sustainability of European aluminium industry 2006’, European Aluminium Association, Belgium, p 20.
  • [3] Total Materia (2004) Marine applications of aluminium alloys: part one. http://www.total mater ia.com/Artic le99.htm. Accessed 10 July 2017.
  • [4] Azarian NS, Ghasemi HM, Monshi MR. J Bio Tribo Corros. 2015;1:1–10.
  • [5] Gungor B, Kaluc E, Taban E, Sik ASS. Mater Des. 2014;54:207–11.
  • [6] Feng J, Zhang H, He P. Mater Des. 2009;30:1850–2.
  • [7] Mishra RS, Ma ZY. Mater Sci Eng R. 2005;50(12):1–78.
  • [8] Grimm A, Schulze S, Silva A, Gobel G, Standfuss J, Brenner B, Beyer E, Fussel U. Mater Today Proc. 2015;2S:169–78.
  • [9] Gibson BT, Lammlein DH, Prater TJ, Longhurst WR, Cox CD, Ballun MC, Dharmaraj KJ, Cook GE, Stauss AM. J Manuf Process. 2014;16(1):56–73.
  • [10] Zhang HT, Feng JC, He P, Hackl H. Mater Char. 2007;58:588–92.
  • [11] Movahedi M, Kokabi AH, Seyed Reihani SM. Sci Technol Weld Join. 2012;17:231–6.
  • [12] Nie F, Dong H, Chen S, Li P, Wang L, Zhao Z. J Mater Sci Technol. 2018;34:551–60.
  • [13] Wang X, Li B, Li M. Mater Sci Eng, A. 2017;688:114–22.
  • [14] Quintino L, Miranda R, Dilthey U, Iordachescu D, Banasik M, Stano S. Adv Struct Mater. 2012;8:33–57.
  • [15] Elrefaey A, Ross NG. Acta Metall Sin. 2015;28:715–24.
  • [16] Kumar NP, Venda SA, Siva N. J Alloys Compd. 2016;658:255–64.
  • [17] Feng J, Liu Y, Sun Q. Adv Eng Mater. 2015;17:1480–5.
  • [18] Davis JR. Aluminium and aluminium alloys, 5th edn. ASM International, Materials park. 1993, p. 784.
  • [19] Kinsley B, Zhihong L, Cao J. SAE technical paper series., 1999, pp. 1999-01-0681.
  • [20] Saunders FI, Wagoner RH. Metal Mater Trans A. 1996;27A:2605–16.
  • [21] Miles MP, Decker BJ, Nelson TW. Metal Mater Trans A. 2004;35A:3461–8.
  • [22] Miles MP, Melton DW, Nelson TW. Metal Mater Trans A. 2005;36A:3335–42.
  • [23] Kesharwani RK, Panda SK, Pal SK. J Mater Eng Perform. 2015;24:1038–49.
  • [24] Enz J, Riekehr S, Ventzke V, Sotirov N, Kashaev N. Proc CIRP. 2014;18:203–8.
  • [25] Enz J, Kumar M, Riekehr S, Ventzke V, Huber N, Kashaev N. J Manuf Process. 2017;29:272–80.
  • [26] Marco P, Safdarian R, Abel DS, Altino L, Pedro V, Natal JRM. Int J Adv Manuf Technol. 2016;83:2129–41.
  • [27] Nouri M, Abdollah-zadehy A, Malek F. J Mater Sci Technol. 2007;23:817–22.
  • [28] Pal K, Pal SK. CIRP J Manuf Sci Technol. 2010;3:55–65.
  • [29] Casari F, Tassan M, Messina A, Molinari A. J Test Eval. 2006;34(1):24–30.
  • [30] Dieter GE. Workability testing techniques. Materials Park: ASM; 1984. p. 157.
  • [31] Mandal NR. Ship construction and welding, Chapter 14, p. 166.
  • [32] Denzler A, Henrikson J. Development of GMAW consumable test method. Diploma work no. 130, 2014. p. 13.
  • [33] Ghosh PK, Gupta SR, Randhawa HS. Metal Mater Trans A. 2000;31A:2247–59.
  • [34] Rajasekaran S. Surf Eng. 2000;16:495–500.
  • [35] Liu HJ, Fujii H, Maeda M, Nogi K. J Mater Process Technol. 2003;142(3):692–6.
  • [36] Casalino G, Mortello M, Leo P, Benyounis KY, Olabi AG. Mater Des. 2014;61:191–8.
  • [37] Bo WANG, Xian-hua CHEN, Fu-sheng PAN, Jian-jun MAO, Yong FANG. Trans Nonferrous Met Soc China. 2015;25:2481–9.
  • [38] Olabode M. Weldability of high strength aluminium alloys. Ph.D Thesis submitted in Lappeenranta University., 2015, p. 50.
  • [39] Elrefaey A, Ross NG. Acta Metal Sin (Engl Lett.). 2015;28(6):715–24.
  • [40] Morrison GK. The effect of stabilization heat treatment on AA5182 aluminium alloy. Master of Science Thesis submitted in University of Cape Town. 2013. p. 15.
  • [41] Hopperstad OS, Borvik T, Berstad T, Lademo OG, Benallal A. Model Simul Mater Sci Eng. 2007;15:747–72.
  • [42] Lloyd D, Evans J, Pelow D, Nolan C, Jain M. Mater. Sci Technol. 2002;18(6):621–8.
  • [43] Hulya D, Nilay C. Tech Appl Sci (NWSATAS). 2017;12(4):170–7.
  • [44] Ronald M, Trevor ED, Iakovos S, Mathias H. Adv Mater Sci Eng. 2011. https ://doi.org/10.1155/2011/53925 2.
  • [45] Yangyang G, Houhong P, Lingbao R, Gaofeng Q. Int J Adv Manuf Technol. 2018. https ://doi.org/10.1007/s0017 0-018-2206-4.
  • [46] Keeler SP, Backofen WA. Trans ASM. 1963;56:25–48.
  • [47] Goodwin GM. Trans Soc Autom Eng. 1968;77:380–7.
  • [48] Hecker SS. Met Eng Q. 1974;14:30.
  • [49] Bhanodaya KBN, Davidson MJ, Neelakanteswara RA. Trans Indian Inst Met. 2015;68(4):529–34.
  • [50] Raju C, Sathiya NC. Trans Indian Inst Met. 2016;69(6):1237–43.
  • [51] Friedman PA, Kridli GT. Aluminium tailor welded blanks for automotive applications presented at the TMS 2000 winter annual meeting and exposition. 1999.
  • [52] Yongjin W, Hengcheng L, Wu Y, Jian Y. Mater Des. 2014;53:634–8.
  • [53] Wang L, Makhlouf M, Apelian D. Int Mater Rev. 1995;40:221–38.
  • [54] Kashyap K, Murali S, Raman K, Murthy K. Mater Sci Technol. 1993;9:189–204.
  • [55] Musa Y, Dursun O. Mater Des. 2013;51:767–74.
  • [56] Hirth SM, Marshall GJ, Court SA, Lloyd DJ. Mater Sci Eng. 2001;319–321:452–6.
  • [57] Flemings MC. Metall Mater Trans B. 1974;5:2121–34.
  • [58] Mohan Kumar A, Siva Shanmugam N. Mater Res Exp. 2018;5:106524.
  • [59] Nakazima K, Kitamura T, Hasuka K. Yawata Tech Rep. 1963;264:141–54.
  • [60] Rajesh Kannan A, Siva Shanmugam N, Arungalai Vendan S. Int J Adv Manuf Technol. 2019;103(9):4265–82.
  • [61] Rajesh Kannan A, Siva Shanmugam N, Naveenkumar S. Mater Today Proc. 2019;18P7:3916–21.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-692a40c8-c449-4dbb-80f6-4e9d687003fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.