Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Operational extended range forecasts are being disseminated once every week by the India Meteorological Department (IMD) for several sectorial applications. These forecasts show a reduction in amplitude and variance as a function of lead-time. Such reductions in variance can be due to several physical factors: inherent forecast model bias, a problem relating to initial conditions, leaddependent statistical biases, etc. A week-by-week analysis shows that such biases are not systematic. Rainfall forecasts are underestimated in some regions, while others overestimate rainfall amplitude. To correct the bias in the extended range weekly averaged forecast, a statistical post-processing method (normal ratio correction) is proposed to make the outlook more valuable at a longer lead-time. The correction method is based on the World Meteorological Organization (WMO) technical guidance on rainfall estimation and is also shown to be useful for rainfall forecasts. In this analysis, we evaluate the extended range forecast skill at the river sub-basin-scale and show that there are several river sub-basins over the central Indian region where the correction has improved the model forecast in the one to two-week range. Although this analysis was tailored toward making the river basins and sub-basins of India more readily realizable for flood forecasters, it can be used for any administrative boundaries such as block, district, or state-level requirements.
Słowa kluczowe
Rocznik
Tom
Strony
1--25
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- India Meteorological Department, Pune, India
autor
- India Meteorological Department, Pune, India
autor
- India Meteorological Department, Pune, India
autor
- India Meteorological Department, Pune, India
autor
- India Meteorological Department, Pune, India
autor
- India Meteorological Department, New Delhi, India
autor
- India Meteorological Department, Pune, India
autor
- India Meteorological Department, New Delhi, India
Bibliografia
- Barnston A.G., 1992, Correspondence among the Correlation, RMSE, and Heidke Forecast Verification Measures; Refinement of the Heidke Score, Weather and Forecasting, 7 (4), 699-709, DOI: 10.1175/1520-0434(1992)0072.0.CO;2.
- Boé J., Terray L., Habets F., Martin E., 2007, Statistical and dynamical downscaling of the Seine basin climate for hydrometeorological studies, International Journal of Climatology, 27 (12), 1643-1655, DOI: 10.1002/joc.1602.
- Chattopadhyay R., Krishna R.P.M., Joseph S., Dey A., Mandal R., Sahai A.K., 2018, A comparison of extended-range prediction of monsoon in the IITM-CFSv2 with ECMWF S2S forecast system, IITM Research Report No. RR-139, available online https://www.tropmet.res.in/~lip/Publication/RR-pdf/RR-139.pdf (data access 28.02.2022).
- Chattopadhyay R., Susmitha J., Abhilash S., Mandal R., Dey A., Phani R., Saranya G., Kaur M., Pattanaik D.R., Sahai A.K., 2019, Understanding the intraseasonal variability over Indian region and development of an operational extended range prediction system, Mausam, 70 (1), 31-36, DOI: 10.54302/mausam.v70i1.166.
- Ghimire U., Srinivasan G., Agarwal A., 2019, Assessment of rainfall bias correction techniques for improved hydrological simulation, International Journal of Climatology, 39 (4), 2386-2399, DOI: 10.1002/joc.5959.
- Gilewski P., 2021, Impact of the grid resolution and deterministic interpolation of precipitation on rainfall-runoff modeling in a sparsely gauged mountainous catchment, Water, 13 (2), DOI: 10.3390/w13020230.
- Gilewski P., Nawalany M., 2018, Inter-comparison of rain-gauge, radar, and satellite (IMERG GPM) precipitation estimates performance for rainfall-runoff modeling in a mountainous catchment in Poland, Water, 10 (11), DOI: 10.3390/w10111665.
- Government of Maharashtra, 2020, A report on flood 2019 (Krishna Sub-basin), available online https://wrd.maharashtra.gov.in/Upload/PDF/Vol%201%20Main%20Report.pdf (data access 28.02.2022).
- Gupta H.V, Kling H., Yilmaz K.K., Martinez G.F., 2009, Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, Journal of Hydrology, 377 (1-2), 80-91, DOI: 10.1016/j.jhydrol.2009.08.003.
- Huang Z., Zhao T., 2022, Predictive performance of ensemble hydroclimatic forecasts: Verification metrics, diagnostic plots and forecast attributes, WIREs Water, e1580, DOI: 10.1002/wat2.1580.
- Jabbari A., Bae D.-H., 2020, Improving ensemble forecasting using total least squares and lead-time dependent bias correction, Atmosphere, 11 (3), DOI: 10.3390/atmos11030300.
- Joseph S., Sahai A.K., Phani R., Mandal R., Dey A., Chattopadhyay R., Abhilash S., 2019, Skill evaluation of extended-range forecasts of rainfall and temperature over the meteorological subdivisions of India, Weather and Forecasting, 34 (1), 81-101, DOI: 10.1175/WAF-D-18-0055.1.
- Kambli K., 2020, Top 5: Biggest floods to affect India in 2019, The Weather Channel, available online https://weather.com/enIN/india/news/news/2020-01-08-top-5-biggest-floods-affect-india-2019 (data access 28.02.2022).
- Leander R., Buishand T.A., 2007, Resampling of regional climate model output for the simulation of extreme river flows, Journal of Hydrology, 332 (3-4), 487-496, DOI: 10.1016/j.jhydrol.2006.08.006.
- Ming X., Liang Q., Xia X., Li D., Fowler H.J., 2020, Real-time flood forecasting based on a high-performance 2-D hydrodynamic model and numerical weather predictions, Water Resources Research, 56 (7), DOI: 10.1029/2019WR025583.
- Pai D.S., Rajeevan M., Sreejith O.P., Mukhopadhyay B., Satbhai N.S., 2014, Development of a new high spatial resolution (0.25°×0.25°) long period (1901-2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region, MAUSAM, 65 (1), DOI: 10.54302/mausam.v65i1.851.
- Pattanaik D.R., Das A.K., 2015, Prospect of application of extended range forecast in water resource management: a case study over the Mahanadi River basin, Natural Hazards, 77, 575-595, DOI: 10.1007/s11069-015-1610-4.
- Pattanaik D.R., Sahai A.K., Mandal R., Muralikrishna R.P., Dey A., Chattopadhyay R., Joseph S., Tiwari A.D., Mishra V., 2019, Evolution of operational extended range forecast system of IMD: Prospects of its applications in different sectors, MAUSAM, 70 (2), DOI: 10.54302/mausam.v70i2.170.
- Sahai A.K., Chattopadhyay R., Joseph S., 2019a, Extended range forecast, Geography and You, 19, 16-21.
- Sahai A.K., Chattopadhyay R., Joseph S., Krishna P.M., Pattanaik D.R., Abhilash S., 2019b, Chapter 20 - Seamless prediction of monsoon onset and active/break phases, [in:] Sub-Seasonal to Seasonal Prediction, A.W. Robertson, F. Vitart (eds.), Elsevier, 421-438, DOI: 10.1016/B978-0-12-811714-9.00020-6.
- Sayama T., Yamada M., Sugawara Y., Yamazaki D., 2020, Ensemble flash flood predictions using a high-resolution nationwide distributed rainfall-runoff model: case study of the heavy rain event of July 2018 and Typhoon Hagibis in 2019, Progress in Earth Planetary Science, 7, 75, DOI: 10.1186/s40645-020-00391-7.
- Shagun K., 2019, Indian rivers crossed highest flood level 25 times in August 2019, Down to Earth, available online https://www.downtoearth.org.in/news/natural-disasters/indian-rivers-crossed-highest-flood-level-25-times-in-august-2019-66818 (data access 28.02.2022).
- Singh A., Sahoo R.K., Nair A., Mohanty U.C., Rai R.K., 2017, Assessing the performance of bias correction approaches for correcting monthly precipitation over India through coupled models, Meteorological Applications, 24 (3), 326-337, DOI: 10.1002/met.1627.
- Teutschbein C., Seibert J., 2012, Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods, Journal of Hydrology, 456-457, 12-29, DOI: 10.1016/j.jhydrol.2012.05.052.
- Webster P.J., Hoyos C., 2004, Prediction of monsoon rainfall and river discharge on 15-30-day time scales, Bulletin of the American Meteorological Society, 85 (11), 1745-1765, DOI: 10.1175/BAMS-85-11-1745.
- Webster P.J., Jian J., Hopson T.M., Hoyos C.D., Agudelo P.A., Chang H., Curry J.A., Grossman R.L., Palmer T.N., Subbiah A.R., 2010, Extended-range probabilistic forecasts of Ganges and Brahmaputra floods in Bangladesh, Bulletin of the American Meteorological Society, 91 (11), 1493-1514, DOI: 10.1175/2010BAMS2911.1.
- WMO, 2018, Guide to Climatological Practice, WMO-No. 100, World Meteorological Organization, Geneva, 139 pp.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6917c7a1-6ca4-428f-a5bd-23b4cfd71f27