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Entropy Coder for Audio Signals
Grzegorz Ulacha and Ryszard Stasinski

Abstract—In the paper an effective entropy coder designed
for coding of prediction errors of audio signals is presented. The
coder is implemented inside a greater structure, which signal
modeling part is a lossless coding backward adaptation algorithm
consisting of cascaded Ordinary Least Squares (OLS), three
Normalized Least Mean Square (NLMS), and prediction error
bias correction sections. The technique performance is compared
to that of four other lossless codecs, including MPEG-4 Audio
Lossless (ALS) one, and it is shown that indeed, on the average
the new method is the best. The entropy coder is an advanced
context adaptive Golomb one followed by two context adaptive
arithmetic coders.

Keywords—lossless audio coding, entropy coding, OLS, NLMS,
prediction error bias, Golomb code, arithmetic code

I. INTRODUCTION

LOSSLESS audio coding is designed for applications
in which preserving of original sound is important:

for archiving of recordings, or when recording is intended
for post-production (advertisements, radio or TV programs,
videography, etc), as lossy decompression-compression cycles
lead to its deterioration. It is also welcomed by audiophiles
purchasing highest quality music on DVDs, Blu-Rays, or by
Internet. The call for proposals for MPEG-4 Audio Lossless
Coding (ALS) standard prompted intensive studies in this area,
they took place in years 2002-2006 [1]. Apart of ALS they are
also other lossless coding systems developed in that time, e.g.
OptimFrog [2], and Monkey’s Audio [3].

When introducing a new coder usually more attention is
directed toward data modelling stage, it usually consists of
predictors [4], [5], [6], but exceptions to that exist, too (see
e.g. MPEG-4 Audio Scalable Lossless coding, SLS [7]). There
are forward and backward predictor adaptation techniques,
in both cases Minimum Mean Square Error (MMSE) is the
optimization criterion. For improving results cascaded systems
are constructed: a two stage forward adaptation algorithm is
described in [8], in [1] a five stage backward adaptation one
is presented. Another way leading to improvements in sound
coding consists in exploiting inter-channel dependencies. For
stereo systems coding gain depends on sound type and ranges
from 0.5% up to 5% [9], on the average 3% gain can be
expected [10].

Entropy coders in lossless audio systems are usually based
on Golomb, Rice, or arithmetic coding schemes, and are
rather simple. The described in this paper one is much more
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sophisticated and forms the main contribution of the work,
data modelling stage is the same as in [11]. Complication
implies higher computational complexity, nevertheless, even
this entropy coder has relatively small impact on the whole
algorithm execution time. It can be then argued that the
presented here technique has better balanced data modelling
and entropy coding stages.

The entropy coder is constructed around an adaptive 9-
class Golomb one, its output is then enhanced by two context
adaptive arithmetic coders. The following section provides
an outline of theoretical background, section II, the coder is
introduced in section III. Description of signal modeling part
of our algorithm is provided in section IV, it is a 5-stage
structure, the first stage being the Ordinary Least Squares
(OLS) predictor, then follows three-stage Normalized Least
Mean Square (NLMS) one, finally the predictor error is tuned
by removing the prediction error bias. As noted above the
structure has been described in [11], the whole algorithm
is summarized in Figure 1. Experimental results have been
obtained by measuring bit rates necessary for coding 16
benchmark sound sequences [12] for the new coder and four
other ones, section V. It can be seen that indeed, the new coder
is the best, Table I.

II. THEORETICAL BACKGROUND

In advanced multimedia compression techniques entropy
coder is preceded by data modeling stage. The stage is in-
tended for minimization of mutual information between input
signal samples, as entropy coder efficiency is optimal when
the mutual information is completely removed, in which case
output coder bit rate reaches the entropy limit [13]. Data
modeling algorithms are usually based on predictors, a linear
predictor of rank r estimates sample x(n):

x̂(n) =

r∑
j=1

bj · x(n− j) (1)

where x(n − j) are previous samples, and bj are prediction
coefficients [13]. Then prediction error is calculated (rounded
up in lossless coding):

e(n) = x(n)− x̂(n) (2)

The simplest codecs use predictors with constant coefficients,
nevertheless, much better results are obtained when predictors
are optimized with respect to the coded signal. There are
two classes of optimization algorithms: forward and backward
ones. Powerful algorithms exist for both approaches, currently
backward adaptation methods seem to be somewhat more
efficient [1].
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Fig. 1. Analyzed system: cascaded predictor of the OLS-NLMS algorithm followed by entropy codr. Note that NLMS predictor is in fact three-stage one.

TABLE I
BIT RATE PER SAMPLE FOR 16 AUDIO SEQUENCES AND 5 LOSSLESS AUDIO CODECS

Sequences RAR 5.0 Shorten 3.6.1 [5] MP4-ALS-RM23 [16] LA04b [27] OLS-NLMS
ATrain 9.552 8.637 7.232 7.204 7.199

BeautySlept 10.771 10.724 8.305 8.318 8.491

chanchan 11.067 10.863 9.886 9.782 9.746
death2 8.825 7.152 6.660 5.907 5.873

experiencia 12.331 12.290 10.992 10.908 10.911

female spech 8.731 7.539 4.710 5.301 4.500
FloorEssence 11.560 11.464 9.509 9.362 9.355

ItCouldBeSweet 11.510 11.587 8.396 8.591 8.255
Layla 11.207 10.871 9.691 9.586 9.633

LifeShatters 11.823 12.177 10.836 10.777 10.828

macabre 10.695 10.564 9.076 9.096 9.166

MaleSpeech 8.735 7.532 4.812 5.233 4.629
SinceAlways 12.265 12.192 10.473 10.404 10.394

thear1 12.285 12.574 11.425 11.398 11.435

TomsDiner 10.112 9.709 7.268 7.153 7.116
velvet 11.643 11.067 10.212 10.248 10.029
Mean 10.820 10.434 8.718 8.704 8.597

In both approaches mean-square error (MSE) is minimized,
which implies that solution of Wiener-Hopf equations is
estimated [13]:

w = R−1 · p (3)

where R and p are signal autocorrelation matrix and vector,
and w is the vector of optimal predictor coefficients bj (1).
There are two main approaches to optimization of these
coefficients: gradient, in practice some form of Least Mean
Square (LMS) algorithm is implemented, and least squares
(LS) minimization, the latter usually is based on recursive LS
methods (RLS).

In MPEG-4 Audio Lossless (ALS) coder maximum frame
length is N = 8192. This means that for high predictor ranks
header information forms an important part of data stream.
Note that in LMS and RLS algorithms predictor coefficients
are not computed in advance, but from past data which are
available both on the coder and decoder sides, hence, there is

no need for including them in coded data. That is why in this
paper backward adaptation approach is implemented.

Prediction error tend to have Laplacian probability distri-
bution, which means that it is natural to encode it using
Golomb [14], or Rice entropy code [15]. Even better results
are obtained when arithmetic coder is used, like the Gilbert-
Moore one [16], or an advanced approach like that described
in this paper.

III. THE ENTROPY CODER

As stated above, prediction error of acoustic signal is usually
coded using some extended version of Golomb, Rice, or
arithmetic coder [16]. The described in this section entropy
coder is constructed around an adaptive Golomb one. In
Golomb coder a non-negative error sample is coded using two
numbers:

uG =

⌊
|e(n)|
m

⌋
(4)
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vG = |e(n)| − uG ·m

where optimal value of m depends on the variance of Laplacian
probability distribution of coded error. Number uG is unary,
i.e. its value is equal to the number of zeros in a sequence
ended with single one, vG is usually coded using phase-in
binary coder [17], in this paper a more advanced approach is
implemented.

To further reduce coding redundancy in our algorithm num-
bers uG and vG are processed by separate adaptive arithmetic
coders, more details on this can be found in consecutive
sections. The proposed in this paper entropy coding scheme
is more sophisticated than that presented in [14], nevertheless,
total computational cost of the introduced in our paper system
is only moderately affected by this fact. In contrast, reduction
in final bit rate is clearly visible, if compared to more
conservative approaches based on Rice, or single arithmetic
coder [16].

A. Estimation of Signal Probability Distribution

The use of Golomb code implies that the described below
entropy coder is intended for coding of prediction error
absolute values, their signs are processed separately. It is a well
known fact that prediction error distribution is usually similar
to Laplacian one, of course, here it is a one-sided distribution.
Prediction error distribution is evaluated by error histogram,
histogram slots are represented by entries of vector ne. At the
algorithm start all histogram slots are set to the same small
value. Then, when an error sample arrives, and its absolute
prediction value is equal to e(n), vector position ne[e (n)] is
increased by one.

With growing numbers of counted in the histogram errors
temporary variations of prediction error distribution have de-
creasing influence on obtained in this way distribution esti-
mate. In this way tracking of signal non-stationarities is weak-
end. To keep error counts not too high forgetting mechanism
is implemented. Namely, a counter of coded error samples is
introduced, every time its value reaches 2s, histogram entries
are halved:

ne(i) :=

⌊
ne(i)

2

⌋
+ 1, for all i from 0 to ēmax (5)

The new value of error samples counter is computed as the
sum of all ne entries.

B. Contexts and Classes

Best signal prediction is obtained when local signal char-
acteristics are taken into consideration, hence, a good idea
is to measure local signal parameters, then to have several
predictors, and to use always the predictor designed for the
current parameters values. This is the idea of context signal
prediction. Namely, measured parameters space is divided into
zones, and contexts are zone indices [18].

The same reasoning can be applied to entropy coding. Here
predictors are replaced by error histograms. To keep track of
local error properties some error parameters are measured, and
coding is done on the basis of histogram pointed out by current
parameter values. We are talking that the histogram is linked

with some error class. The number of classes should be chosen
carefully: the greater the number, the better tracking of local
error properties, but at the same time the slower convergence
of at least some histograms, hence, longer period of suboptimal
coding. In image coding they are examples of systems with
8 [18], 16, and even 20 classes [19], we decided to introduce
here 9 ones.

The parameter chosen for defining class number is based
on a similar idea to that in [20]. Namely, average of absolute
values of few previous errors is considered:

ω =
5

4z

z∑
i=1

|e(n− i)|√
i

(6)

where value z = 17 has been found experimentally. The
parameter ω is quantized using 8 thresholds: th = {4, 10, 30,
50, 80, 180, 500, 1100}, the class number is the index of range
defined by thresholds.

C. Refinement of Golomb coder

Golomb code is optimal when signal probability distribution
is geometric (Laplacian). In this paper 38 predefined variants
of such probability distributions are used for each error class,
section III.B. The laplacian distributions are given by the
following formula:

Gj (i) = (1− p(j))pi(j) (7)

j = 0, 1, ..., 37. Each probability p(j) is linked with appropriate
parameter m in (4), approximate formula linking m(j) with
p(j) is:

p(j) = 2
−( 1

m(j)
)
, (8)

m(j) are from the experimentally found set {1, 2, 4, 8, 12, 16,
20, 24, 32, 40, 48, 64, 80, 96, 128, 160, 192, 256, 320, 384,
448, 512, 576, 640, 768, 896, 1024, 1152, 1280, 1536, 1792,
2048, 2560, 3072, 4096, 5120, 6144, 8192}.

The current m(j) in (4) is chosen to minimize average cost
of signal coding. The cost for (n+1)-st error sample is obtained
from formula:

Lcost(j)(n+1) = fGolomb ·Lcost(j)(n)+length(j)(ē(n)) (9)

where length(j)( e(n)) is the amount of bits needed for
coding absolute value of current error e(n), and fGolomb is a
forgetting factor, its experimentally found value is 0.986. Its
name is linked with the fact that when formula (9) is expanded,
current cost appears to be the sum of previous ones multiplied
by increasing powers of fGolomb. The cost is computed for all
38 probability distributions of the currently used class, section
III.B, the lowest one determines the choice of m(j). Note that
they are 9 classes, hence, in total 9·38 = 342 cost counters
should be implemented.

The approach proposed in [16] (MPEG-4 ALS) is much
simpler, where only one counter is used, and optimal Rice
code parameter is obtained as a result of a simple function.
Results provided in Table I show that this coder is inferior to
that described in this paper.
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D. Arithmetic Coders

There are two outputs from the Golomb code: unary number
uG, and binary one vG (4). Then, if we want to improve the
Golomb code, the numbers should be treated in different ways,
as they are represented in different systems. In the paper the
numbers are coded by separate context adaptive arithmetic
coders. Note that described in the paper Golomb code provides
additional information about prediction error: its class, section
III.B, and what predefined error distribution was used for its
coding, section III.C.

Number uG is a unary number, hence, the first coder is a
binary one. The number of contexts for this coder is 38·128
= 4864, which is the result of the following calculation: Each
context is linked with one of 38 error probability distributions,
section III.C. There are 9 error classes, section III.B, but here
classes 7 and 8 are merged, so the next multiplier is 8, and
not 9. In this way we are obtaining 38·8 = 304 combinations.
Further parameters determining number of contexts are as
follows:

Definition of parameter khigh is:
khigh =

= max{|e(n− 1)| , |e(n− 2)| , |e(n− 3)| , 0.6 · |e(n− 4)|}
(10)

The parameter is quantized using one threshold having value
1500. In this way the number of combinations increases to
608.

The next parameter kone is just the value represented by
two last bits used in coding of previous uG.

Then, the last parameter klast is set to one if any of the
following previous bits used for coding of uG is one: -3, -4,
-5, or -6.

Summarizing, the context number is computed from the
following formula:

ctxu = kbest · (kclass ·24 +khigh ·23 +kone ·22 +klast) (11)

where kbest is the index of predefined error geometric distri-
bution (7) determining the choice of m(j) (8) that minimizes
the cost function (9), and kclass is the index of class, section
III.B, except that classes 7 and 8 are merged.

At start all 4864 binary histograms are set to 100 both
for slots used for counting zeros and ones. The described
in section III.A forgetting mechanism is activated when the
number of counts reaches 2s = 217 (similarly as in (5)
histogram values are halved), value s = 17 has been determined
experimentally.

Contexts for coding of vG are linked with 37 values of m(j)

enumerated in section III.C (note that for m(0) = 1 vG has only
one value – zero, and need not be coded). Possible values of
vG, hence, slot indices of their histograms extend from 0 to
m(j) − 1, j = 1, 2, ..., 37. Initially histogram slots are set to
integer number closest to:

p(j)(i) =
2
− i

m(j)∑m(j)−1

i=0 2
− i

m(j)

(12)

times 2s, where value s = 17 has been found empirically, and
index i has the same meaning as in (7). Note that (12) provides

precise relation between probability powers in (7) and (8).
Also here the histogram forgetting mechanism described in
section III.A is used.

IV. IMPLEMENTED SYSTEM

Tested in this paper lossless audio compression system is
depicted in Figure 1. The proposed signal modeling part of
the coder is a 5-stage structure, it was described for the
first time in [11], The idea is similar to that from [21], the
enhancements in the data modelling stage are as follows:
use of Ordinary Least Squares (OLS) predictor instead of
Recursive Least Squares (RLS) one, there is no Differential
Pulse Code Modulation (DPCM) at the beginning (OLS works
equally well on quantized samples), and addition of prediction
error bias correction. Similarly as in [21] Normalized Least
Mean Square (NLMS) part consists of three cascaded NLMS
predictors, the feature is not shown in Figure 1 for clarity sake.
Ranks of NLMS predictors are {1000, 25, 10}. And, of course,
there is the described in the previous section completely new
entropy coder at the end.

Detailed description of signal modeling substructures can
be found in the following subsections.

A. Inter-Channel Prediction
Such prediction can be done for multichannel audio sys-

tems, as dependencies between channels can be exploited for
reducing coder bit rate. For used in experiments stereo signals
it can be done as follows:

x̂L(n) =

rL∑
i=1

ai · xL(n− i) +

rR∑
j=1

bj · xR(n− j),

x̂R(n) =

rL∑
j=1

bj · xR(n− j) +

rR−1∑
i=0

ai · xL(n− i) (13)

In the above formula rR denotes rank of predictor for channel
coded second rather than for right channel. Equally well this
can be the left one, as L indexes in fact channel which is coded
first. It was found experimentally that optimal proportion of
predictor ranks rL/rR was often close to 2:1 [22].

B. OLS Method
The name OLS, or Ordinary Least-Squares is used for direct

LS method, i.e. that in which predictor coefficients w(n) are
not computed recursively, compare (3):

w(n) = R−1(n) · p(n) (14)

where R(n) is an estimator of signal autocorrelation matrix and
p(n) is an estimator of autocorrelation vector. Their elements
are computed as follows:

R(j,i)(n+ 1) = ff ·R(j,i)(n) + x(n− i) · x(n− j) (15)

p(j)(n+ 1) = ff · p(j)(n) + x(n) · x(n− j)
and ff is a forgetting factor (gradually diminishes older
estimators in (15)), its value has been found experimentally,
and is equal to 0.998. Initially matrix R(n) and vector p(n)
are set to zero, hence, inversion of R(n) should start for n
much higher than the predictor rank r (matrix should be well-
defined). In our case it is the 100-th iteration, as the optimal
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rank of OLS predictor appears to be r = 20 (rL = 10, rR = 10).
Previously, the method was successfully applied to lossless
coding of images [23], [24].

Computational complexity of OLS is clearly higher than that
of any RLS algorithm, nevertheless, the used here predictor
ranks are much smaller than those of the following NLMS
filters, so this is not of great importance for the complexity
of the whole method. The advantage of using OLS consists
not only in minimization of problems with numerical stability
plaguing RLS approach, OLS output usually has somewhat
smaller entropy than that of RLS, hence, better data compres-
sion is obtained.

C. NLMS Adaptive Filter

In the stochastic gradient-descent algorithm filter coeffi-
cients are updated as follows:

wNLMS(n+ 1) = wNLMS(n) + µ(n) · e(n) · x(n) (16)

where w(n) is the vector of filter coefficients, x(n) is data
vector containing last r signal samples, properties of the
filter (stability, convergence rate) are determined by learning
coefficient µ(n), and e(n) is filter prediction error. In the case
of Normalized Least Mean Square (NMLS) algorithm the
learning coefficient is controlled by temporary averaged signal
power:

µ(n) =
µ

1 +
∑r−1

i=0 x
2(n− i)

(17)

µ is a constant and x(n − i) are elements of x(n). We
use a somewhat more complicated formula on updating filter
coefficients, with decreasing weights for older signal samples
(here input data vector is eOLS(n)):

wNLMS(n+1) = wNLMS(n)+µ(n)·e(n)·C·eOLS(n) (18)

where C is a diagonal matrix having elements diag{0.9951

0.9952 ... 0.995r} [25]. Also formula on learning coefficient
µ(n) is here more complicated than in classical NLMS, com-
pare (17):

µ(n) =
µ ·
∑r−1

i=0
1

(i+1)0,8

1 +
∑r−1

i=0
e2OLS(n−i)

(i+1)0,8

(19)

note forgetting 1/factor (i+1)0.8 which diminishes older error
samples at the output of predictor from the previous stage. The
scaling factor 1/(i + 1)0,8, multiplier 0.995 in matrix C, and
constant µ = 2−8 (appropriate for 16-bit samples) have been
found empirically.

D. Prediction Error Bias Correction

Some prediction methods tend to accumulate DC predic-
tion error component (prediction error bias). Up to now the
phenomenon has been taken into account mainly in image
lossless coding methods, see e.g. [26]. Prediction error bias
cancellation methods are based on context idea, i.e. for each
type of sample neighborhood a different correction value is
remembered and updated. Digits of the number representing
context are determined by properties of neighbor samples:
their variance level, if the previous error is ”high” or ”low”,

sample differences etc. Note that c such conditions result in
2c contexts.

In this paper a two-level prediction error bias correction
approach is implemented: 12 different bias correction methods
are defined, the final correction is obtained by summing up
their results with appropriate weights. Only one of four imple-
mented here context determining methods will be presented: it
consists in constructing context 10-bit number in the following
way (i.e. 1024 contexts are defined): Three first bits are just
decisions if samples x(n - i) > x̂(n) (current prediction), for
i = 1, 2, 3 (yes - 1, no - 0). The next three are obtained from
conditions 2x(n - i) - x(n - i - 1) > x̂(n) for i = 1, 2, 3. Next
two conditions are e(n - i) > 0 for i = 1, 2 (concern prediction
error). Finally, a number

xave(n) =
1

5

5∑
i=1

|x(n− i)− x̂(n)| (20)

is quantized using 4 experimentally found thresholds {50, 250,
700}, ranges defined by thresholds provide two last bits of
context number.

It has been observed that the technique results in bit rate
reduction up to 1%.

V. EXPERIMENTS

The described here new algorithm has been used for coding
16 sound samples from the base [12]. These are rather short
sequences containing samples of different kind of music and
speech. Results are compared to those for other widely used
audio codecs, and to those of RAR 5.0, being a general-
purpose archiving program, Table I. As can be seen, indeed,
in all cases specialized audio codecs are better than RAR 5.0,
and the best of all is the new OLS-NLMS algorithm, best
results for each audio sequence are in bold.

The presented in the paper entropy coder is rather com-
plicated, nevertheless, its complexity is well matched to that
of the implemented system. Namely, its execution time forms
26.9% of the time for the whole coder, its tenfold reduction
would result in roughly 24% reduction of coding method com-
putational complexity. This is not a great deal, especially that
entropy coder performance do have influence on the technique
efficiency. Definitely, this is not an option for simplest possible
lossless audio coding systems.

Proper evaluation of the whole coder complexity is rather
difficult: RAR 5.0, and MP4-ALS-RM23 are highly optimized
software packages not using floating-point arithmetic, which is
common for experimental programs. Code for other methods
was not written by authors, and execution times were tested
on different equipment. It can be only stated that the proposed
method has improved performance at the cost of increased
computational complexity.

VI. CONCLUSION

In the paper structure of a new sophisticated entropy coder
for audio signals is presented. The coder consists of context
adaptive Golomb one, outputs of which are coded by two
adaptive context arithmetic coders. The coder has been ap-
plied for compressing prediction error from a lossless signal
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modeling stage consisting of OLS algorithm, cascaded with
three-stage NLMS predictor, then followed by prediction error
bias removal stage [11], Figure 1. The resultant technique is
a better audio lossless coding method than those reported in
the literature, Table I.
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