PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A finite element approach to develop track geometrical irregularity thresholds from the safety aspect

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Riding quality and safety of rail tracks are directly influenced by track geometry; hence, their degradation along time could reduce safety and cause serious accidents. Standards propose thresholds for track geometrical parameters to keep track safety and riding comfort at an acceptable level. In this study, a method is proposed to select or define a set of proper thresholds for geometrical parameter irregularities according to desirable to safety level. The impact of track geometry irregularities on the derailment index has been investigated through the finite element model. The results suggest that twist and gauge shortage have a greater effect on the derailment index compared to the vertical profile of the track. Having the critical values of geometrical irregularities that result in derailment, safety factors of Iranian and Euro code standards in determining their thresholds are calculated and compared. It is shown that each standard has a unique set of safety factors that depend on speed and geometrical parameters.
Rocznik
Strony
695--705
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • School of Civil Engineering, Sharif University of Technology, Tehran, Iran
  • School of Railway Engineering, Iran University of Science and Technology, Tehran
autor
  • School of Railway Engineering, Iran University of Science and Technology, Tehran
Bibliografia
  • 1. Amani J., Amini R., 2012, Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network, Scientica Iranica, DOI: 10.1016/j.scient.2012.02.009
  • 2. Arasteh Khouy I., Larsson-Kraik P.O., Nissen A., Juntti U., Schunnesson H., 2013, Optimization of track geometry inspection interval, Journal of Rail and Rapid Transit, DOI: 10.1177/0954409713484711
  • 3. Arasteh Khouy I., Larsson-Kr˚aik P.O., Nissen A., Kumar U., 2014, Cost-effective track geometry maintenance limits, Journal of Rail and Rapid Transit, 228, 5, 546-556
  • 4. Ataei S., Mohammadzadeh S., Jadidi A., Miri A., 2014, Effects of maintenance operations on railway track’s mechanical behavior by field load testing, International Journal of Pavement Engineering, 15, 3, 215-227
  • 5. Berggren E.G., Li X.D.M., Spannar J. ¨ , 2008, A new approach to the analysis and presentation of vertical track geometry quality and rail roughness, Wear, 265, 1488-1496, DOI: 10.1016/j.wear.2008.01.029
  • 6. Corrierea F., Di Vincenzo D., 2012, The rail quality index as an indicator of the „global comfort” in optimizing safety, quality and efficiency in railway rails, Procedia – Social and Behavioral Sciences, 53, 1090-1099, DOI: 10.1016/j.sbspro.2012.09.958
  • 7. Elhag T.M.S., Boussabaine A.H., 2002, Tender price estimation using artificial neural network, II – Modeling, Journal of Financial Management of Property and Construction, 7, 1, 49-64
  • 8. Elkins J., Wu H., 2000, New criteria for flange climb derailment, Proceedings of 2000 IEEE ASME Joint Rail-road Conference, Newark, NJ, April 4-6, DOI: 10.1109/RRCON.2000.869983
  • 9. EN 14363, 2005, Railway Applications, Testing for the Acceptance of Running Characteristics of Railway Vehicles, Testing of Running Behaviour and Stationary Tests, CEN, Brussels
  • 10. EN-13848-5, 2008, Track Geometry Quality, Geometric Quality Levels
  • 11. Hong-Guang Ni., and J.Z. Wang, 2000, Prediction of compressive strength of concrete by neural networks, Cement and Concrete Research, 30, 8, 1245-1250, DOI: 10.1016/S0008-8846(00)00345-8
  • 12. Iran Ministry of Roads and Transportation, 2005, Railway Track Superstructure General Technical Specifications, Standard No. 301, Ministry Publication Service, pp. 9-12
  • 13. Jin X.S., Wen Z.F., Wang K.Y., 2005, Effect of track irregularities on initiation and evolution of rail corrugation, Journal of Sound and Vibration, 285, 21-148, DOI: 10.1016/j.jsv.2004.08.042
  • 14. Karmel A., Sweet L.M., 1981, Evaluation of time-duration dependent wheel load criteria for wheel climb derailment, ASME Journal of Dynamic Systems Measurement and Control, 103, 219-227, DOI: 10.1115/1.3140632
  • 15. Kik W., Menssen R., Moelle D., Bergerder B., 2002, Comparison of results of calculations and measurements of DYSAF-tests, A research project to investigate safety limits of derailment at high speeds, Vehicle System Dynamics, 37, Suppl., 543-553
  • 16. Li D., Meddah A., Hass K., Kalay S., 2006, Relating track geometry to vehicle performance using neural network approach, Journal of Rail and Rapid Transit, 220
  • 17. Madejski J., Grabczyk J., 2002, Continuous geometry measurement for diagnostics of track and switches, Proceedings of the International Conference on Switches, Delft University of Technology, Delft, The Netherlands
  • 18. Miri A., Mohammadzadeh S., 2014, Acceleration-based quality assessment of railway tracks using a 2D simulation model and recorded track data, Advances in Railway Engineering, 2, 1, 13-20
  • 19. Mohammadzadeh S., Ghahremani S., 2010, Estimation of train derailment probability using rail vertical profile alterations, Structure and Infrastructure Engineering, 1-20, iFirst article alterations, DOI: 10.1080/15732479.2010.500670
  • 20. Mohammadzadeh S., Sangtarashha M., Molatefi H., 2011, A novel method to estimate derailment probability due to track geometric irregularities using reliability techniques and advanced simulation methods, Archive of Applied Mechanics, 81, 1621-1637, DOI: 10.1007/s00419-011-0506-3
  • 21. Nadal M.J., 1908, Locomotives `a Vapeur, Collection Encyclop´edie Scientifique, Bibliot`eque de M´ecanique Appliqu´ee et G´enie, vol. 186, Paris
  • 22. ORE – International Union of Railways, (1981), Quantitative Evaluation of Geometric Track Parameters Determining Vehicle Behavior, Office of research and experiments, C152, RP1
  • 23. Sibaie M.El., Jamieson D., Tyrell D., Dorcey J., Mee B., Whutten B., Kesler K., 1997, Engineering studies in support of the development of high speed track geometry specifications, IEEE/ASME Joint Railroad Conference, Boston, Massachusetts
  • 24. Song H., Kwon S., 2009, Evaluation of chloride penetration in high performance concrete using neural network algorithm and micropore structure, Cement and Concrete Research, 39, 9, 814-824, DOI: 10.1016/j.cemconres., 05.013
  • 25. Union Internationale des CheminsdeFer, 2003, UIC CODE518, Sec.10-1-1-1, Second edition
  • 26. Weinstock H., 1984, Wheel-climb derailment criteria for evaluation of rail vehicle safety, ASME Winter Annual Meeting, Paper No. 84-WA/RT-1
  • 27. White H., 1989, Some asymptotic results for learning in single hidden layer feed forward network models, Journal of the American Statistical Association, 84, 408, 1003-1012, DOI: 10.1080/01621459, 1989.10478
  • 28. Wu H., Wilson N., 2006, Railway vehicle derailment and prevention, [In:] Handbook of Railway Vehicle Dynamics, S. Inwicki (Edit.), 209-238. Taylor & Francis, UK
  • 29. Xia F., True H., 2004, The dynamics of the three-piece-freight truck, Vehicle System Dynamics, 41, 212-221, DOI: 10.1109/RRCON.2003.1204661
  • 30. Yadav R.K., 2007, The Investigation of Derailments, 3rd ed., Indian Railways Institute of Civil Engineering
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6905f3d4-ce07-4b98-b275-f41c63c14ac3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.