PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Spectrophotometric studies of marine surfactants in the southern Baltic Sea

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is well known that surfactants in the southern Baltic Sea constitute the organic matter from riverine waters discharges as well as the secondary degradation products of marine phytoplankton excretion. They reach the surface microlayer by the upwellings and turbulent motions of water and in the membranes of the vesicles as well as from the atmosphere. To assess concentration and spatial distribution of marine surfactants in the southern Baltic Sea, the steady-state spectrophotometric and spectrofluorometric measurements of water samples taken from a surface film and a depth of 0.5 m were carried out. Water samples were collected during windless days of the cruise of r/v ‘Oceania’ in November 2012, from the open and the coastal waters having regard to the vicinity of the Vistula and Łeba mouths. In the present paper, fractions of dissolved organic matter having chromophores (CDOM) or fluorophores (FDOM) are recognized through their specific spectroscopic behavior, i.e., steady-state absorption, fluorescence excitation and fluorescence spectra. The steady-state spectroscopic measurements revealed the CDOM and FDOM molecules characteristic to both the land and marine origin. Moreover, the concentration and spatial distribution of marine surfactants significantly depend on the distance from the river mouth. Finally, higher values of absorbance and fluorescence intensity observed in a surface film in comparison to these values in a depth of 0.5 m clearly suggest the higher concentration of organic matter in a marine film. On the other hand, our results revealed that a surface microlayer is composed of the same CDOM and FDOM as bulk water.
Czasopismo
Rocznik
Strony
159--167
Opis fizyczny
Bibliogr. 40 poz., tab., wykr., mapy
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Experimental Physics, University of Gdańsk, Gdańsk, Poland
Bibliografia
  • Ahel, M., Terzic, S., 2003. Biogeochemistry of aromatic surfactants in microtidal estuaries. Chimia 57, 550—555.
  • Babichenko, S., 2001. Spectral Fluorescent Signatures in Diagnostics of Water Environment. Institute of Ecology, Tallinn Pedagogical University.
  • Bednorz, E., Półrolniczak, M., Czernecki, B., 2013. Synoptic conditions governing upwelling along the Polish Baltic coast. Oceanologia 55 (4), 767—785.
  • Belzile, C., Roesler, C.S., Christensen, J.P., Shakhova, N., Semiletov, I., 2006. Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption, Estuarine. Coastal and Shelf Science. 67 (3), 441—449.
  • Blough, N.V., Del Vecchio, R., 2002. Chromophoric DOM in the coastal environment. In: Hansell, D.A., Carlson, C.A. (Eds.), Biogeochemistry of Marine Dissolved Organic Matter. Elsevier, USA.
  • Cieśliński, R., 2013. Short-term changes in specific conductivity in Polish coastal lakes (Baltic Sea basin). Oceanologia 55 (3), 639—662.
  • Cieśliński, R., Drwal, J., 2005. Quasi-estuary processes and consequences for human activity, South Baltic. Estuar. Coast. Shelf Sci. 62 (3), 477—485.
  • Cincinelli, A., Stortini, A.M., Perugini, M., Checchini, L., Lepri, L., 2001. Organic pollutants in sea-surface microlayer and aerosol in the coastal environment of Leghorn (Tyrrhenian Sea). Mar. Chem. 76, 77—98.
  • Coble, P., 2007. Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107, 402—418.
  • Coble, P.G., 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 51 (4), 325—346.
  • Coble, P.G., Green, S.A., Blough, N.V., Gagosian, R.B., 1990. Characterization of DOM in the Black Sea by fluorescence spectroscopy. Nature 348, 432—435.
  • Ćosović, B., Vojvodić, V., 1998. Voltammetric analysis of surface active substances in natural seawater. Electroanalysis 10 (6), 429—434.
  • Darecki, M., Stramski, D., 2004. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sens. Environ. 89, 326—350.
  • Drozdowska, V., 2007a. Seasonal and spatial variability of surface seawater fluorescence properties in the Baltic and Nordic Seas: results of lidar experiments. Oceanologia 49 (1), 59—69.
  • Drozdowska, V., 2007b. The lidar investigation of the upper water layer fluorescence spectra of the Baltic Sea. Eur. Phys. J. Spec. Top. 144, 141—145.
  • Drozdowska, V., Fateyeva, N.L., 2013. Spectrophotometric study of natural Baltic surfactants — results of marine experiment. In: Traczewska, T.M., Hanus-Lorenz, B. (Eds.), Hydrobiology in Environment Protection. Oficyna Wydawnicza PWr., Wrocław, 25—32.
  • Drozdowska, V., Freda, W., Baszanowska, E., Rudź, K., Darecki, M., Heldt, J.R., Toczek, H., 2013. Spectral properties of natural and oil polluted Baltic seawater — results of measurements and modeling. Eur. Phys. J. Spec. Top. 222, 2157—2170.
  • Fellman, J.B., Hood, E., Spencer, R.G.M., 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol. Oceanogr. 55 (6), 2452—2462.
  • Frew, N.M., Nelson, R.K., 1999. Spatial mapping of sea surface microlayer surfactant concentration and composition. In: Stein, T.I. (Ed.), Proceedings of the 1999 International Geosience and Remote Sensing Symposium. IEEE Publications, Piscataway, 1472—1474.
  • Grzybowski, W., 2000. Effect of short-term sunlight irradiation on absorbance spectra of chromophoric organic matter dissolved in coastal and riverine water. Chemosphere 40 (12), 1313—1318.
  • Harvey, G., Burzell, L.A., 1972. A simple microlayer method for small samples. Limnol. Oceanogr. 17, 156—157.
  • Hudson, N., Baker, A., Reynolds, D., 2007. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters — a review. River Res. Appl. 23, 631—649.
  • Józefowicz, M., Aleksiejew, M., Heldt, J.R., Bajorek, A., Pączkowski, J., Heldt, J., 2007. Spectroscopic properties of ethyl 5-(4-ami-nophenyl)-3-amino-2,4-dicyanobenzoate. Chem. Phys. 338, 53—61.
  • Korshin, G.V., Chi-Wang, L., Benjamin, M.M., 1997. Monitoring the properties of natural organic matter through UV spectroscopy: a consistent theory. Water Res. 31 (7), 1787—1795.
  • Kowalczuk, P., Durako, M.J., Young, H., Kahn, A.E., Cooper, W.J., Gonsior, M., 2009. Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: interannual variability. Mar. Chem. 113, 182—196.
  • Kowalczuk, P., Stoń-Egiert, J., Cooper, W.J., Whitehead, R.F., Durako, M.J., 2005. Mar. Chem. 96, 273—292.
  • Kowalczuk, P., Zabłocka, M., Sagan, S., Kuliński, K., 2010. Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea. Oceanologia 52 (3), 431—471.
  • Kutser, T., 2004. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 49 (6), 2179—2189.
  • Leenheer, J.A., 1985. Fractionation techniques for aquatic humic substances. In: Aiken, G.R., McKnight, D.M., Wershaw, R.L., MacCarthy, P. (Eds.), Humic Substances in Soil, Sediment and Water. Wiley, New York, 409—429.
  • Liss, P.S., Duce, R.A. (Eds.), 1997. The Sea Surface and Global Change. Cambridge University Press, UK.
  • Maritorena, S., Morel, A., Gentili, B., 2000. Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat. Appl. Opt. 39 (36), 6725—6737.
  • Ostrowska, M., Woźniak, B., Dera, J., 2012. Modelled quantum yields and energy efficiency of fluorescence, photosynthesis and heat production by phytoplankton in the World Ocean. Oceanologia 54 (4), 565—610.
  • Parlanti, E., Wörz, K., Geoffroy, L., Lamotte, M., 2000. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem. 31 (12), 1765—1781.
  • Petelski, T., Markuszewski, P., Makuch, P., Jankowski, A., Rozwadowska, A., 2014. Studies of vertical coarse aerosol fluxes in the boundary layer over the Baltic Sea. Oceanologia 56 (4), 697—710.
  • Petrovic, M., Fernandez-Alba, A.R., Borrull, F., Marce, R.M., Mazo, E. G., Barcelo, D., 2002. Occurrence and distribution of nonionic surfactants their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain. Environ. Toxicol. Chem. 21, 37—46.
  • Schwarz, J., Kowalczuk, P., Kaczmarek, S., Cota, G.F., Mitchell, B.G., Kahru, M., Chavez, F.P., Cunningham, A., McKee, D., Gege, G., Kishino, M., Phinney, D.A., Raine, R., 2002. Two models for absorption by coloured dissolved organic matter (CDOM). Oceanologia 42 (2), 209—241.
  • Soloviev, A., Lukas, R., 2006. Near-Surface Layer of the Ocean, Structure Dynamics and Applications Atmospheric and Oceanographic Sciences Library, vol. 31. Springer.
  • Upstill-Goddard, R.C., 2006. Air-sea gas exchange in the coastal zone. Estuar. Coast. Shelf Sci. 70, 388—404.
  • Uścinowicz, S., 2010. Geochemistry of Baltic Sea Surface Sediments. 978-83-7538-814-5.
  • Zutić, V., ĆosoviĆ, B., Marcenko, E., Bihari, N., 1981. Surfactant production by marine phytoplankton. Mar. Chem. 10, 5050—5520.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6904b9d8-ca29-420e-b01d-1d1e57707af8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.