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1.  Introduction

In many real-world applications such as airliner, railway, and sat-
ellite systems, operation of missions often involves multiple tasks or 
phases that must be accomplished in sequence. During each phase, 
some equipments may play different roles and subject to different en-
vironmental conditions. Thus, the system configuration, success cri-
teria, and component behavior may change from phase to phase. This 
kind of systems are commonly termed as the phased-mission systems 
(PMS) . A typical example of PMS is the monitoring system in the 
satellite-launching mission which involves the launching, separation, 
and orbiting phases. Some equipments, such as the ground-station ra-
dars, may suffer from increasing stresses in the separation phase and 
becomes idle in other phases. Because of the dependence problem, 
the reliability of PMS is not the product of reliabilities of individual 
phases. Hence, the reliability analysis of PMS is more complex than 
that of the single-phase systems.

Over the past four decades, substantial progress has been made in 
the reliability analysis of PMS [3]. Basically, existing methodologies 

can be categorized into the simulation and the analytical methods. The 
main advantage of the simulation methods [6, 19, 25] is their wide 
applicability to a variety of scenarios, while the merit of the analytical 
approaches lies in the accuracy of algorithm results. The analytical 
approaches can be further classified into the state-based, the combina-
torial, and the modular methods. Typical state-based methods, such as 
the Markovian models [1, 4, 28, 31], are commonly used to analyze 
the PMS with repairable components. A commonly known challenge 
facing the state-based methods is the state explosion problem when 
the number of components becomes large. On the other hand, the bi-
nary decision diagrams (BDD) based methods [2, 15, 16, 18, 22, 27, 
29, 30] (belong to combinatorial methods) are efficient for the PMS 
with many components. However, BDD based methods can suffer a 
similar explosion problem (node or path explosion) when the number 
of phases becomes large. This problem is known as the BDD explo-
sion in the PMS analysis.

The modular methods [13, 14, 21, 24, 25], which integrate the 
state-space and the combinatorial methods, are efficient in analyzing 
the PMS with a multitude of repairable components. A classic rep-
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Z elementami naprawialnymi 
Phased-mission systems (PMS) are the system in which the component stresses and the system configuration may change over 
time. Real-world PMS usually consist of a large number of repetitive phases and repairable components. Existing approaches for 
the reliability analysis of this kind of PMS tend to suffer from the problem of state explosion or binary-decision-diagram (BDD) 
explosion. This paper presents a truncation method based on the BDD and Markov chains to solve the scaling issue. In our ap-
proach, the truncation mitigates the BDD explosion and broadens the applicability of the BDD & Markov method. Different from 
the classic truncations, our truncation limit is flexible, which ensures that ensure the truncation error is lower than the predefined 
threshold. The advantages of the proposed method are illustrated through two practical PMS which are challenging to classic 
non-simulation approaches.
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Systemy o zadaniach okresowych (phased mission systems, PMS) to takie systemy, w których naprężenia elementów składowych 
oraz konfiguracja systemu mogą z czasem ulegać zmianie. W warunkach rzeczywistych, PMS zazwyczaj charakteryzują się dużą 
liczbą powtarzalnych faz zadaniowych i składają się z wielu naprawialnych elementów. Istniejące metody analizy niezawodności 
tego typu systemów niestety posiadają ograniczenia związane z problemem eksplozji stanów lub eksplozji diagramów binarnych 
decyzji (binary decision diagram, BDD) Praca przedstawia metodę obcinania opartą na BDD oraz łańcuchach Markowa, która 
pozwala rozwiązać wspomniane problemy złożoności obliczeniowej. W proponowanym podejściu, obcięcie minimalizuje eksplozję 
BDD zwiększając możliwości zastosowania metody opartej na BDD oraz łańcuchach Markowa. W odróżnieniu od klasycznego 
obcinania, w opracowanej przez nas metodzie granica obcięcia jest elastyczna co pozwala zredukować błąd obcięcia poniżej 
wcześniej określonego progu. Zalety proponowanej metody zilustrowano na przykładzie dwóch stosowanych w praktyce systemów 
PMS, które stanowią wyzwanie dla klasycznych metod niesymulacyjnych.

Słowa kluczowe: elastyczna granica obcięcia; systemy o zadaniach okresowych; ocena niezawodności; elemen-
ty naprawialne.
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resentative of the modular methods is the BDD & Markov approach 
[25] which is designed for the PMS with many exponentially distrib-
uted components. As the further work of the BDD & Markov method, 
Shrestha et al. [24] proposed the multistate multivalued decision dia-
gram for the reliability analysis of PMS with multi-state repairable 
components. Another further work [13] is the component-behavior 
model which analyzes the PMS with combinatorial phase require-
ments and repairable components. However, the BDD & Markov 
method (and its further works) cannot avoid the BDD explosion prob-
lem because the cross-phase BDD has to be assessed from the first 
phase to the last phase. 

In order to overcome the scaling issue, extensive research efforts 
have been expended in the analysis of approximations, bounds, and 
truncations. A common practice [5, 11, 12, 17, 19] is to apply trunca-
tions to BDD or cut sets, that is, to remove the BDD nodes (or BDD 
paths) whose probabilities are less than the truncation limit. However, 
a lot of researchers [5, 7, 12] find that a fixed truncation limit may 
be the major source of estimation error. In this paper, we implement 
truncations to reduce the computational complexity of the BDD & 
Markov method for the analysis of large PMS. Furthermore, our trun-
cation limit will decrease as the truncation proceeds. This truncation 
strategy can keep the overall error under the user control, and avoids 
the complex discussion about error estimation in the literature.

The remainder of the paper is organized as follows. Section 2 
presents the proposed method which integrates BDD, Markov chains, 
and truncations. Section 3 illustrates our approach through two real-
world PMS. The efficiency of our approach is compared with the con-
ventional BDD & Markov method and the Petri-net simulation. Lastly, 
Section 4 gives conclusions and future directions of our work.

2. Proposed method for large PMS analysis

2.1. Assumptions & method overview

Throughout the paper, we make the following assumptions for our 
approach. (1) The life and the repair time of components are independ-
ent variables of exponential distributions. (2) The mission is assumed 
to fail if the system fails in any phase. (3) Repaired components can 
be reused only in the next phase. (This assumption exists in the BDD 
& Markov method as well.)

Generally, our approach consists of mainly three steps, that is,
Step 1 - Generate component-behavior vectors (CBV) based on  

  BDD.
Step 2 - Compute path vectors (PV) phase by phase. 

Step 3 – Sum up the probabilities of the last-phase PV to obtain 
the PMS reliability.

In the following, we first propose our model without the trunca-
tion. When the number of phases becomes large, we need to use the 
truncation step to reduce the time and the space consumption of our 
model. The flowchart of our approach is given in Fig. 1.

2.2. Model without truncation

The concept of component-behavior vectors (CBV) was first 
proposed in [13]. CBVs are in essence equivalent to the BDD paths 
(readers may refer to [10, 23] for BDD basics). Consider the system 
whose reliability block diagram (RBD) is shown in Fig. 2. CBVs can 
be obtained through the enumeration of the paths which link the root 
node and the sink node 1  in the BDD. In CBVs, the matrix ( )k

iU  
corresponds to the “true” edge of node k, while ( )k

iD  corresponds to 
the “false” edge. ( )k

iE  is used if the BDD path does not contain the 
decision node of k . The expressions of ( )k

iE , ( )k
iU , and ( )k

iD  can be 
find in [13, 25]. For instance, ( )k

iU  (for binary-state component) is of 
the form:
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where iT  is the duration of phase i . λi
k( )  and µi

k( )  are the failure 
rates and the repair rates of k in phase i, respectively.

After we generate CBVs for each phase, the reliability of PMS can 
be assessed through path vectors iPV . iPV  is defined as:
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where i is the phase index. The operator “  ” represents the element-
by-element multiplication, which is also known as the Hadamard 
product (or the entrywise product) [9]. Take the system in Fig. 3 for 
instance, there are two CBVs in phase 1 and three CBVs in phase 2 
i.e.,
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Fig. 1. Flowchart of the proposed method

Fig. 2. Generation of CBVs
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According to the definition of PVs , PVs of phase 1 are identical 
to CBVs, i.e.,

 ( ) ( )
1 1 ( 1,2,...)q qPV CBV q= =   (5)

PVs of phase 2 are the entrywise product of 1PV  and 2CBV . For in-

stance, (5)
2PV  (fifth path vector in phase 2) can be expressed as:

 
(5) (2) (2) (2) (2)
2 1 2 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2 1 2( , , , )A A B B C C D D

PV PV CBV CBV CBV= =

= D D U E E U E E

 

 (6)

When the final-phase PVs are generated, the PMS reliability is the 
sum of probabilities of the last-phase PVs, i.e.,

 ( )
PMS

1
( ) Pr{ }

p
q

j p
j q

R T PV
=

=∑ ∑  (7)

where p is the index of the last phase. ( )Pr{ }j
pPV  is the probability of 

( )j
pPV . Suppose ( )j

pPV = 1( ,..., )na a , ( )Pr{ }j
pPV  is defined as:
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where ( )
0 (1,0)k =v  if the component k is initially operational. The col-

umn vector ' '(1,1)=1  is used to transfer ( )
0
k

k⋅v a  into the scalar. For 

instance, the probability of (5)
2PV  is given by:
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Suppose the PMS contains p phases, we can calculate the PMS 
reliability after we obtain all ( )Pr{ }j

pPV . The proposed algorithm 

(without truncations) can be summarized by Fig. 4.

2.3. Truncation with flexible threshold

Many real-world PMS may contain thousands of phases which 
may lead to enormous space consumption in the above algorithm. On 
this occasion, the truncation step is necessary to reduce the computa-
tional complexity. Consider the Fig. 5 PMS which contains several 
repetitive phases. It is inefficient to calculate all Pr{ }iPV  because the 
number of PVs increases exponentially with the phase index i. In the 
BDD & Markov approach [13, 24, 25], a similar problem exists be-
cause the top-down algorithm can lead to the BDD path explosion (or 
bottom-up algorithm leads to BDD node explosion) when the number 
of phases becomes large. 

In order to solve the scaling problem, we use the classical trunca-
tion methods [5, 11, 12, 17, 19] with fixed truncation limit (i.e. fixed 
threshold). However, the error analysis associated with a fixed trunca-
tion limit may be very complex. In addition, some works [5, 7] show 
that the truncation error is highly sensitive to the component param-
eters. Here, we present a decreasing truncation limit to guarantee that 
the truncation error is less than the predefined “maximum permissible 
error” (MPE). The flexible truncation limit γ i  of phase i is defined 
as:

 γ i
i

MPE PV
Num PV

=
− Pr{ }
( )

 (9)

where ( )iNum PV  is the number of PVs which are removed during 

phase i. With , we remove iPV  if Pr{ }PVi i< γ . Every time we de-

Fig. 3. Generation of PVs

Fig. 5.  Exponential increase in the number of PVs

Fig. 4. Proposed algorithm without truncation
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lete a path vector, the value of γ i  will decrease. MPE 
is a predefined algorithm parameter.

In the following, we demonstrate that the total 
truncation error is less than (or equals to) MPE . Let 

iPV ∆  to be the path vector removed when the algo-

rithm reaches phase i. By removing iPV ∆ , we also 

eliminate some PVs in the later phase. Take Fig. 6 for 

example, suppose (1)
2PV  (first PV in phase 2) is re-

moved during phase 2. PVs stem from (1)
2PV  are also 

removed (including (1)
3PV , (2)

3PV , and 
(1) (6)
4 4~PV PV ). Since Pr{ } 1ii CBV <∑ , we can see 

that Pr{ }iPV ∆  is bigger than (or equals to) the sum of 

probabilities of PVs which stem from iPV ∆ , i.e., 

 * *
1 1Pr{ } Pr{ }; ( stems from )i i i iPV PV PV PV∆ ∆
+ +≥ ∑  (10)

By repeating Eq. (10), we have:

 * ( )
1Pr{ } Pr{ } ... Pr{ }s

i i qsPV PV PV∆
+≥ ≥ ≥∑ ∑  (11)

where ( )s
qPV  is the last-phase PVs which stem from iPV ∆ . When the 

algorithm reaches the last phase, we sum up the probabilities of all 

removed iPV ∆ , and then:

 ( )
PMS PMSPr{ } Pr{ }s

i q
i i s

MPE PV PV R R error∆ ′≥ ≥ = − =∑ ∑∑  (12)

where Pr{ }iiMPE PV ∆≥ ∑  holds because of the definition of γ i . 

The inequality (12) shows that the total truncation error is less than 
the user-defined MPE. Overall, the proposed method with truncations 
can be summarized by Fig. 7.

2.4. Determination of MPE

From above algorithm, we find that a smaller MPE parameter 
leads to a more accurate reliability result, but at the cost of more 
memory and time expense. Generally, MPE is determined by the fol-
lowing steps:

Step 1 – Set MPE=0 and check whether the algorithm is able 
to generate a reliability result. Empirically, if the algorithm cannot 
generate a result within 3 min, it suggests that the memory space is 
not sufficient (computing with virtual memory is unacceptably time-
consuming). In this case, MPE should increase (see Step 2). 

Step 2 – Let MPE=10−9, and run the algorithm to see the algo-
rithm performance. If the algorithm still encounter the problem of in-
sufficient memory, move to Step 3.

Step 3 – Increase MPE by 10 times, and run the truncation algo-
rithm with new MPE. Repete Step 3 until the truncation algorithm is 
able to generate a result. The appropriate MPE is the first value which 
guarantees the algorithm can generates a result. 

For most PMS cases, our truncation algorithm is able to generate 
a result with MPE=0.1. Above 3-step procedure can be summarized 
as Fig. 8. In summery, MPE is determined by the case concerned and 
the performance of user’s computer. We need to test different MPE 
sample to determine the appropriate MPE. 

Fig. 6. Truncation of PVs

Fig. 8. Procedure to determine maximum permissible error

Fig. 7. Proposed algorithm with truncations
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3. Case study

3.1. Train-speed monitoring mission

The surveillance of the train speed is an important mission in rail-
way administration. The speed of the train can be measured by the 
sensors installed near railway stations, or by the radars installed along 
the railway. Consider a train which travels across three cities for two 
laps in a day, as shown in Fig. 9. The monitoring system is operational 

as long as two sets of data can be simultaneously recorded. This sys-
tem can be modeled as the PMS whose RBD is shown in Fig. 10. 

Suppose all equipments in Fig. 10 are repairable, there are three 
kinds of methods available for the reliability analysis of this PMS. 
Apparently, the conventional Markovian method [1] is not efficient 
because of the enumeration of 211 states. The BDD & Markov method 
[13, 24, 25] and our approach can generate the results using less space 
than the Markovian approach. In comparison with the BDD & Mark-
ov method, the main advantage of our approach is the truncation step 
which significantly reduces the computation time (see the experimen-

tal results in Table 2). In this PMS, we assume the 
equipments may fail even if they are idle. The 
system parameters are presented in Table 1.

In our approach, we first generate CBVs of 
phases 1-6 (see Fig. 11). CBVs of phases 7-12 
are the same as that of phases 1-6. Secondly, 
we calculate PVs phase by phase using. For in-
stance, (1)

3PV  is of the form:

(1) ( 1) ( 1) ( 1) ( 4) ( 4) ( 4)
3 1 2 3 1 2 3( , )S S S S S SPV = U E E E E U

(13)

Finally, given MPE=10-6, the PMS reliabil-
ity is given by:

 
18

( )
PMS 18

1
( ) Pr{ }s

j
j s

R T PV
=

=∑ ∑  (14)

Fig. 10. PMS model for the speed-monitoring mission

Fig. 11. CBVs of phase 1-6

Fig. 9. Train-speed monitoring mission

Table 1. Parameters of the speed-monitoring PMS

Parameters Value  (Time unit: hour)

Phase duration iT  
( i  - phase index)

0.2, 1,3,5,...,17
3, 2,4,6,...,18i

i
T

i
=

=  =

Failure rates 

3

3

2 10 , Sensors

10 , Radars
K

K

K
λ

−

−

 ⋅ == 
=

( λK  remains fixed in all phases.)

Repair rates µK µK = 0 01.  (for all components)

( µK  remains fixed in all phases.)
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In order to verify the correctness of our algorithm, we compare the 
non-simulation approaches with the Petri-net simulation. From Table 
2, we can see that three kinds of methods generate the similar reliabili-
ties for this PMS. The non-simulation algorithms are programmed by 
the MATLAB language, and implemented with a 1.8 GHz processor. 
The average computation time in Table 2 is recorded without multi-
threading. And we can see that our approach is much less time con-
suming than the BDD & Markov method. In the Petri-net simulation, 
the model contains one Petri net for the phase-index increment (with 
low priority), one Petri net for the detection of system failure, and 
11 Petri nets for the independent equipments. We carry out the Petri-
net simulation using the GRIF software [8] with 107 iterations. In the 
next instance, we show that the truncation step is indispensable in 
avoiding the excessive memory cost of the traditional BDD & Markov 
method.

3.2. Regular test mission in the oil and 
gas system

In the oil and gas industry, the regular test is 
one essential part of safety procedures. Consider 
a pressure protection system which is used to stop 
flow in case of overpressure. Equipments in the 
system may suffer from higher pressure during 
the test phases than the normal phases. Hence, 
the pressure protection system can be model as 
the PMS whose structure remains fixed during 
the entire mission, as shown in Fig. 12.

It can be seen from Fig. 12 that the phase 1 
and the phase 2 are duplicated as the test is peri-
odically carried out. In this PMS, components can 
be modeled as repairable if they can be quickly 
renewed after failure. Generally, the duration of the test phase is much 
shorter than that of the normal phases. Here, we suppose the life and 

the repair time are exponentially distrib-
uted. Relevant parameters of the PMS are 
presented in Table 3.

In the traditional BDD & Markov 
method, the time cost and the space cost 
increases exponentially with the number 
of phases in the PMS. The experimental 
results in Table 4 show that the computing 
capacity of the BDD & Markov algorithm 
is 5 phases. Further computation will result 
in the problem of the insufficient compu-

ter memory. However, when we use the proposed flexible truncation 
(with MPE=10-5), the computing capacity of our approach increases 
to 8 phases. The computing capacity will increase if MPE gets big-
ger. In our experiment, the algorithms are programmed without multi-
threading, and run on a 1.8 GHz processor to record the computation 
time.

The proposed method is validated by the Petri-net simulation us-
ing the GRIF software [8] with 107 iterations. In the Petri-net model, 
there is one Petri-net determining the phase transition, one Petri net 
determining the PMS failure, and 9 Petri nets determining the states 
of every component. By comparing the BDD & Markov method with 
our approach, we can see that the truncation step is indispensable to 
obtain the PMS reliability. In many real-world applications, the PMS 
model often contains a large number of repetitive phases, and the 
components in the PMS are usually considered as repairable. The pro-
posed method is efficient to analyze this kind of PMS.

4. Conclusion

In the modeling of practical PMS, the system normally consists of 
several subsystems, and the subsystems may comprise many equip-
ments. To keep the PMS model concise, reliability engineers usually 

Table 2. Reliability and computation time for the speed-monitoring PMS

Time (Hour)

Traditional
BDD & Markov

Proposed method
(MPE =10−6)

Petri-net 
simulation

PMS reliability Computation 
time (s) PMS reliability Computation 

time (s) PMS reliability

9.6 (phase-6 end) 0.999995 0.07 0.999995 0.04 0.999995

19.2 (phase-12 end) 0.999919 23.9 0.999918 0.93 0.999920

Fig. 12. PMS model for the pressure protection system

Table 3. Parameters of the pressure-protection PMS

Parameters Value  (Time unit: hour)

Phase duration iT
168, normal phase.
2, test phase.iT 

= 


Failure rates λK
λK =

⋅







−

−

10

5 10

4

4

,

, .

normal phase.

test phase
 

(for all components)

Repair rates µK µK = 0 05.  (for all components)

Table 4. Reliability and computation time for the pressure-protection PMS

Time (Hour)

Traditional 
BDD & Markov

Proposed method
(MPE=10−5)

Petri-net 
simulation

PMS reli-
ability

Computation 
time (s)

PMS reli-
ability

Computa-
tion time (s)

PMS reli-
ability

170 (end of phase 2) 0.998871 0.02 0.998871 0.02 0.998867

340 (end of phase 4) 0.997389 7.23 0.997388 1.22 0.997468

510 (end of phase 5) 0.995930 146 0.995927 3.73 0.996095

680 (end of phase 8) Insufficient memory 0.994425 185 0.994594
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neglect the details of equipment configurations, and consider each 
subsystem as an entity whose behavior is exponentially distributed. 
Hence, the number of components in the PMS may not be very large if 
the engineers want a small-scale model. However, most PMS models 
cannot avoid a large number of phases because the real-world mission 
usually contains many repetitive tasks. This paper proposes an effi-
cient approach for the reliability assessment of these PMS.

When the PMS model contains a multitude of phases, existing ap-
proaches may suffer from the BDD-explosion problem. Our approach 
uses truncations to analyze the PMS with many phases, and uses BDD 
to analyze the PMS with many components. In our approach, the de-
creasing truncation limit can keep the truncation error within the user-
defined maximum permissible error. The case study shows that the 

truncation is a necessary step to solve the explosion problem as the 
number of phases increases. A possible direction of future works is to 
explore the application of our method in the field of the aerospace, as-
sembling, and nuclear power industry, and to explore better truncation 
strategies using classic methods.
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