PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of industrial frequency converters for project-oriented education of controlled electrical drives

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the perspective of current trends in engineering education, aiming at meeting industry requirements, especially in the field of power electronics and motion control, the article presents a way of teaching electric drive control in undergraduate engineering programmes using experimental setups with AC motors equipped with industrial frequency converters. The setups consist of two motors: induction and PMSM (each one can act as a motor or a load machine) and a number of other elements necessary in contemporary drive systems: speed sensors, temperature sensors and braking resistors. While using such setups students can learn about various issues related to AC motor control, both in terms of scalar and field-oriented control methods in all three drive operating modes: torque, velocity and position control. The laboratory setups allow students to familiarize themselves with such detailed issues as: vector control without a speed sensor, various ways of voltage control in a DC input circuit of the voltage inverter during motor braking or the influence of the type and value of load torque on drive system operation. Classes can have a classical form or they can be taught in the open-laboratory system.
Wydawca
Rocznik
Strony
103--116
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] PATEL P., Where the jobs are: 2012, IEEE Spectrum, 2012, 49(9), 26-32.
  • [2] AGELIDIS V.G., The future of power electronics-power engineering education. Challenges and opportunities, IEEE Workshop on Power Electronics Education, Brazil, 2005, 1-8.
  • [3] ORŁOWSKA-KOWALSKA T., Application of training education systems in specialized education of electrical engineers, Przegl. Elektrotechn., 1998, 6, 202-205 (in Polish).
  • [4] ALSMADI Y., TSAI K., SCOTT M.J., XU L., WANG A., New Trends and Technologies in Power Electronics and Motor Drives Education, 121st ASEE Annual Conf. Exp., Indianapolis, 2014, on CD.
  • [5] ROBBINS W., MOHAN N., JOSE P., BEGALKE T., HENZE C., UNDELAND T., A building-block-based power electronics instructional laboratory, IEEE 33rd Annual Power Electronics Specialists Conference (PESC), Australia, 2005, 467-472.
  • [6] BALOG R.S., SORCHINI Z., KIMBALL J.W., CHAPMAN P.L., KREIN P.T., SAUER P.W., Modern laboratory-based education for power electronics and electric machines, IEEE Trans. Power Syst., 2005, 20(2), 538-547.
  • [7] ANAND S., SINGH R., FERNANDES F.B.G., Unique Power Electronics and Drives Experimental Bench (PEDEB) to Facilitate Learning and Research, IEEE Trans. Educ., 2012, 55(4), 573-579
  • [8] HURLEY W.G., LEE C.K., Development, Implementation, and Assessment of a Web-Based Power Electronics Laboratory, IEEE Trans. Educ., 2005, 48(4), 567-573.
  • [9] BAUER P., FEDAK V., Teaching Electrical Drives and Power Electronics: eLearning and Beyond, Automatika, 2010, 51(2), 166-173.
  • [10] KORETSKY M.D., AMATORE D., BARNES C., KIMURA S., Enhancement of Student Learning in Experimental Design Using a Virtual Laboratory, IEEE Trans. Educ., 2008, 51(1), 76-85.
  • [11] BAUER P., FEDAK V., ROMPELMANN O., PEMCWebLab – Distance and Virtual Laboratories in Electrical Engineering. Development and Trends, 13th Power Electronics and Motion Control (EPE-PEMC), Poznan 2008, 2385-2390.
  • [12] DUFOUR C., ANDRADE C., BELANDER J., Real-time simulation technologies in education. A link to modern engineering methods and practices, 11th Int. Conf. Engineering and Technology Education (INTERTECH), Brazil, 2010, 1-5.
  • [13] MENGHAL P.M., LAXMI A.J., Real time simulation: A novel approach in engineering education, 3rd Int. Conf. Electronics Computer Technology (ICECT), India, 2011, 215-219.
  • [14] COLLINES E., An energy conversion laboratory using industrial-grade equipment, IEEE Trans. Power Syst., 2009, 24(1), 3-11.
  • [15] HEITMANN G., Project-oriented study and project-organized curricula. A brief review of intentions and solutions, Eur. J. Eng. Educ., 1996, 21(2), 121-131.
  • [16] KJERSDAM F., Tomorrow’s engineering education. The Aalborg experiment, Eur. J. Eng. Educ., 1994, 19(2), 197-203.
  • [17] MILLS J.E., A case study of project-based learning in structural engineering, The 2002 American Society for Engineering Education Ann. Conf. (ASEE), Montreal, Canada, 2002, 511-518.
  • [18] http://www.lenze.pl, official webpage of Lenze, Poland.
  • [19] Lenze Topline 8400, Hardware Manual, 2014.
  • [20] ORŁOWSKA-KOWALSKA T., Sensorless induction motor drives, Ofic. Wyd. PWr., Wrocław 2003 (in Polish).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-69001f42-57a3-4066-8759-2a8f2488ad47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.