Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Od niecałych dwóch dekad perowskity halogenkowe zdobywają coraz większe zainteresowaniew środowisku naukowym oraz branży paneli fotowoltaicznych. Wyróżniające je właściwości, takie jak: modyfikowalna przerwa energetyczna, możliwość absorpcji fal świetlnych w bliskim ultrafiolecie, stworzenie elastycznego ogniwa słonecznego o wysokiej sprawności konwersji energii sprawiły, że materiał ten uznawany jest za technologię przyszłości w zakresie fotowoltaiki. W niniejszym rozdziale przedstawiono podstawowe zagadnienia związane z budową oraz zastosowaniem nieorganiczno-organicznych perowskitów halogenkowych jako ogniw słonecznych, a także zastosowaniem w innych urządzeniach, np. emitujących światło. Omówione zostały również przyczyny niskiej stabilności perowskitów i potencjalne rozwiązania umożliwiające ograniczenie degradacji tych materiałów. W perowskitach o wyższej stabilności występuje toksyczny ołów, dlatego analiza ryzyka jego przeniknięcia do środowiska zewnętrznego i sposoby zapobiegania temu procesowi są kluczowe z wprowadzenia tej technologii na rynek. Na koniec zostały przedstawione perspektywy komercjalizacji ogniw perowskitowych, wraz z ośrodkami naukowymi i firmami zajmującymi się ich rozwojem i wdrożeniem.
Czasopismo
Rocznik
Tom
Strony
185--207
Opis fizyczny
Bibliogr. 88 poz.
Twórcy
autor
- Politechnika Wrocławska, Wydział Mechaniczno-Energetyczny
Bibliografia
- [1] Khan M.Q., Ahmad K., Origin and Fundamentals of Perovskite Solar Cells, „Recent Advances in Nanophotonics - Fundamentals and Applications” 2020, DOI: 10.5772/intechopen.94376.
- [2] Kojima A., Teshima K., Shirai Y., Miyasaka T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, „Journal of the American Chemical Society” 2009, 131(17), DOI: 10.1021/ja809598r, s. 6050, 6051.
- [3] Zhou P., Liu L., Cheng J., Jiao C., Song K., Shan C., Li W., Liang G., Wang J., Huang F., Cheng Y.B., A General Large-Scale Fabrication of Tin Oxide with Interfacial Engineering via Trichloropropylsilane for Hysteresis-Free MAPbI3 Perovskite Solar Cells Exceeding 20% PCE, „Bulletin of the Chemical Society of Japan” 2022, 95(10), DOI: 10.1246/bcsj.20220146, s. 1506-1514.
- [4] Li C., Lu X., Ding W., Feng L., Gao Y., Guo Z., Formability of ABX3 (X = F, Cl, Br, I) halide perovskites, „Acta Crystallographica B” 2008, 64, DOI: 10.1107/S0108768108032734, s. 702.
- [5] Łuszczek M., Łuszczek G., Świsulski D., Simulation investigation of perovskite--based solar cells, „Przegląd Elektrotechniczny” 2021, 97, DOI: 10.15199/48.2021.05.17, s. 99-102.
- [6] Docampo P., Ball J., Darwich M. et al., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, „Nature Communications” 2013, 4, 2761, DOI: 10.1038/ncomms3761.
- [7] Kaltenbrunner M., Adam G., Głowacki E., Drack M., Schwödiauer R., Leonat L., Apaydin D.H., Groiss H., Scharber M.C., White M.S., Sariciftci N.S., Bauer S., Flexible high power-per-weight perovskite solar cells with chromium oxide- metal contacts for improved stability in air, „Nature Materials” 2015, 14, DOI: 10.1038/nmat4388, s. 1032-1039.
- [8] Kang S., Jeong J., Cho S., Yoon Y.J., Park S., Lim S., Kim J.Y., Ko H., Ultrathin, lightWeight and flexible perovskite solar cells with an excellent power-per-weight performance, „Journal of Materials Chemistry A” 2019, 7, DOI: 10.1039/C8TA10585E, s. 1107-1114.
- [9] Nishiwaki H., Uchihashi K., Takaoka K., Nakagawa M., Inoue H., Takeoka A., Tsuda S., Ohnishi M., Development of an ultralight, flexible a-Si solar cell submodule, „Solar Energy Materials and Solar Cells” 1995, 17(3-4), DOI: 10.1016/0927-0248(95)00022-4, s. 295-306.
- [10] Bing J., Caro L.G., Talathi H.P., Chang N.L., Mckenzie D.R., Ho-Baillie A.W.Y., Perovskite solar cells for building integrated photovoltaics-glazing applications, „Joule” 2022, 7(6), DOI: 10.1016/j.joule.2022.06.003, s. 1446-1474.
- [11] Raifuku I., Ishikawa Y., Ito S., Uraoka Y., Characteristics of Perovskite Solar Cells under Low-Illuminance Conditions, „The Journal of Physical Chemistry C” 2016, 120(34), DOI: 10.1021/acs.jpcc.6b05298, s. 18986-18990.
- [12] Bohren C.F., Atmospheric Optics, w: The Optics Encyclopedia, T.G. Brown, K. Creath, H. Kogelnik, M.A. Kriss, J. Schmit, M.J. Weber (red.), 2007, DOI: 10.1002/9783527600441.oe004.
- [13] Chen C.Y., Chang J.H., Chiang K.M., Lin H.L., Hsiao S.Y., Lin H.W., Perovskite Photovoltaics for Dim-Light Applications, „Advanced Functional Materials” 2015, 45(25), DOI: 10.1002/adfm.201503448, s. 7064-7070.
- [14] McCluney R., Introduction to Radiometry and Photometry, Artech House, Boston-London 1994.
- [15] Balenzategui J.L., Chenlo F., Measurement and analysis of angular response of bare and encapsulated silicon solar cells, „Solar Energy Materials and Solar Cells” 2005, 86(1), DOI: 10.1016/j.solmat.2004.06.007, s. 53-83.
- [16] Ball J.M., Stranks S.D., Hörantner M.T., Hüttner S., Zhang W., Crossland E.J.W., Ramirez I., Riede M., Johnston M.B., Friend R.H., Snait H.J., Optical properties and limiting photocurrent of thin-film perovskite solar cells, „Energy and Environment Science” 2015, 8, DOI: 10.1039/C4EE03224A, s. 602-609.
- [17] Shchegolkov A.V., Jang S.H., Shchegolkov A.V., Rodionov Y.V., Sukhova A.O., Lipkin M.S., A Brief Overview of Electrochromic Materials and Related Devices: A Nanostructured Materials Perspective, „Nanomaterials” 2021, 11(9), 2376, DOI: 10.3390/nano11092376.
- [18] Liu Y., Wang J., Wang F., Cheng Z., Fang Y., Chang Q., Zhu J., Wang L., Wang J., Huang W., Qin T., Full-frame and high-contrast smart windows from halide-exchanged perovskites, „Nature Communications” 2021, 12, 3360, DOI: 10.1038/s41467-021-23701-z.
- [19] Ling H., Wu J., Su F., Tian Y., Liu Y.J., Automatic light-adjusting electrochromic device powered by perovskite solar cell, „Nature Communications” 2021, 12, 1010, DOI: 10.1038/s41467-021-21086-7, s. 1010.
- [20] Wang K.L., Zhou Y.H., Lou Y.H., Wang Z.K., Perovskite indoor photovoltaics: opportunity and challenges, „Chemical Science” 2021, 12, DOI: 10.1039/D1SC03251H, s. 11936-11954.
- [21] Minnaert B., Veelaert P., Efficiency simulations of thin film chalcogenide photovoltaic cells for different indoor lighting conditions, „Thin Solid Films” 2011, 519(21), DOI: 10.1016/j.tsf.2011.01.362, s. 7537-7540.
- [22] Wu M.J., Kuo C.C., Jhuang L.S., Chen P.H., Lai Y.F., Chen F.C., Bandgap Engineering Enhances the Performance of Mixed-Cation Perovskite Materials for Indoor Photovoltaic Applications, „Advanced Energy Materials” 2019, 9, 1901863, DOI:10.1002/aenm.201901863.
- [23] Dagar J., Castro-Hermosa S., Lucarelli G., Cacialli F., Brown T.M., Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers, „Nano Energy” 2018, 49, DOI: 10.1016/j.nanoen.2018.04.027, s. 290-299.
- [24] Cheng R., Chung C.-C., Zhang H., Liu F., Wang W.-T., Zhou Z., Wang S., Djurišić A.B., Feng S.-P., Tailoring Triple-Anion Perovskite Material for Indoor Light Harvesting with Restrained Halide Segregation and Record High Efficiency Beyond 36%, „Advanced Energy Materials” 2019, 9, 1901980, DOI: 10.1002/aenm.201901980.
- [25] Muhammad B.T., Kar S., Stephen M., Leong W., Halide perovskite-based indoor photovoltaics: recent development and challenges, „Materials Today Energy” 2022, 23, 100907, DOI: 10.1016/j.mtener.2021.100907.
- [26] Perovskite electronic shelf labels as a new tool for the FMCG/Retail sector , sauletech. com, 24.11.2021 [dostęp: 31.12.2022].
- [27] Żabka Eko Smart - pierwszy w Polsce sklep łączący ekologię z technologią, zabka. pl, 7.09.2022 [dostęp: 31.12.2022].
- [28] Wang K., Zheng L., Hou Y., Nozariasbmarz A., Poudel B., Yoon J., Ye T., Yang D.,Pogrebnyakov A.V., Gopalan V., Priya S., Overcoming Shockley-Queisser limit using halide perovskite platform?, „Joule” 2022, 6(4), DOI: 10.1016/j.joule.2022.01.009, s. 756-771.
- [29] Albuquerque G.M., Theoretical limit for efficiency of silicon solar cells, „Sistemas de Energia Solar / Engenharia da Energia e Ambiente” 2018-2019.
- [30] Chantana J., Kawano Y., Nishimura T., Mavlonov A., Shen Q., Yoshino K., Iikubo S., Hayase S., Minemoto T., Impact of Auger recombination on performance limitation of perovskite solar cell, „Solar Energy” 2021, 217, DOI: 10.1016/j.solener. 2021.02.018, s. 342-353.
- [31] National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart, 28.12.2022.
- [32] Akhil S., Akash S., Pasha A., Kulkarni B., Jalalah M., Alsaiari M., Harraz F.A., Balakrishna R.G., Review on perovskite silicon tandem solar cells: Status and prospects 2T, 3T and 4T for real world conditions, „Materials & Design” 2021, 211, 110138, DOI: 10.1016/j.matdes.2021.110138.
- [33] Hörantnera M.T., Snaith H.J., Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions, „Energy & Environmental Science” 2017, 10, DOI: 10.1039/C7EE01232B, s. 1983-1993.
- [34] Verduci R., Romano V., Brunetti G., Yaghoobi N., Di A., D’Angelo G., Ciminelli C., Solar Energy in Space Applications: Review and Technology Perspectives, „Advanced Energy Materials” 2022, 12, 2200125, DOI: 10.1002/aenm.202200125.
- [35] Paternò G.M., RobbianoV., Santarelli L., Zampetti A., Cazzaniga C., Garcìa Sakai V., Cacialli F., Perovskite Solar Cell Resilience to Fast Neutrons, „Sustainable Energy & Fuels” 2019, 3, DOI: 10.1039/C9SE00102F, s. 2561-2566.
- [36] Lang F., Norbert H. N.H., Bundesmann J., Seidel S., Denker A., Albrecht S., Brus V.V., Rappich J., Rech B., Landi G., Neitzert H.C., Radiation Hardness and Self-Healing of Perovskite Solar Cells, „Advanced Materials” 2016, 28, DOI: 10.1002/adma.201603326, s. 8726-8731.
- [37] Lang F., Jošt M., Frohna K., Köhnen E., Al-Ashouri A., Bowman A.R., Bertram T., Morales-Vilches A.B., Koushik D., Tennyson E.M., Galkowski K., Landi G., Creatore M., Stannowski B., Kaufmann C.A., Bundesmann J., Rappich J., Rech B., Denker A., Albrecht S., Neitzert H.C., Nickel N.H., Stranks S.D., Proton Radiation Hardness of Perovskite Tandem Photovoltaics, „Joule” 2020, 5(4), DOI: 10.1016/j.joule.2020.03.006, s. 1054-1069.
- [38] Cardinaletti I., Vangerven T., Nagels S., Cornelissen R., Schreurs D., Hruby J., Vodnik J., Devisscher D., Kesters J., D’Haen J., Franquet A., Spampinato V., Conard T., Maes W., Deferme W., Manca J.V., Organic and perovskite solar cells for space applications, „Solar Energy Materials and Solar Cells” 2018, 182, DOI: 10.1016/j.solmat.2018.03.024, s. 121-127.
- [39] Reb L.K., Böhmer M., Predeschly B., Grott S., Weindl C.L., Ivandekic G.I., Guo R., Dreißigacker C., Gernhäuser R., Meyer A., Müller-Buschbaum P., Perovskite and Organic Solar Cells on a Rocket Flight, „Joule” 2020, 9(4), DOI: 10.1016/j.joule.2020.07.004, s. 1880-1892.
- [40] Edri E., Kirmayer S., Kulbak M., Hodes G., Cahen D., Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells, „The Journal of Physical Chemistry Letters” 2014, 5(3), DOI: 10.1021/jz402706q, s. 429-433.
- [41] Luo J., Im J.H., Mayer M.T., Schreier M., Nazeeruddin M.K., Park N.G., Tilley S.D., Fan H.J., Grätzel M., Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts, „Science” 2014, 6204(345), DOI: 10.1126/science.1258307, s. 1593-1596.
- [42] Sabba D., Kumar M.H., Wong L.H., Barber J., Grätzel M., Mathews N., Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting, „Nano Letters” 2015, 15(6), DOI: 10.1021/acs.nanolett.5b00616, s. 3833-3839.
- [43] Yakunin S., Sytnyk M., Kriegner D., Shrestha S., Richter M., Matt G.J., Azimi H., Brabec C.J., Stangl J., Kovalenko M.V., Heiss W., Detection of X-ray photons by solution-processed lead halide perovskites, „Nature Photon” 2015, 9, DOI: 10.1038/nphoton.2015.82, s. 444-449.
- [44] Zhang X., Dong X., Wang S., Liu H., Hu W., Li X., A self-powered photodetector based on polarization-driven in CH3NH3PbI3 single crystal (100) plane, „Chemical Engineering Journal” 2021, 404, 125957, DOI: 10.1016/j.cej.2020.125957, s. 125957.
- [45] Ji K., Anaya M., Abfalterer A., Stranks S.D., Halide Perovskite Light-Emitting Diode Technologies, „Advanced Optical Materials” 2021, 9, 2002128, DOI: 10.1002/adom.202002128.
- [46] Zhao L., Roh K., Kacmoli S., Al Kurdi K., Jhulki S., Barlow S., Marder S.R., Gmachl C., Rand B.P., Thermal Management Enables Bright and Stable Perovskite Light-Emitting Diodes, „Advanced Materials” 2020, 32(25), e2000752DOI: 10.1002/adma.202000752.
- [47] Peleg R., The perovskite handbook, Perovskite-Info, Kfar Saba 2022.
- [48] Frost J.M., Butler K.T., Brivio F., Hendon C.H., van Schilfgaarde M., Walsh A., Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells, „Nano Letters” 2014, 14(5), DOI: 10.1021/nl500390f, s. 2584-2590.
- [49] Zheng C., Rubel O., Unraveling the Water Degradation Mechanism of CH3NH3PbI3, „The Journal of Physical Chemistry C” 2019, 123(32), DOI: 10.1021/acs.jpcc.9b05516, s. 19385-19394.
- [50] Li Y., Xu X., Wang C., Wang C., Xie F., Yang J., Gao Y., Degradation by Exposure of Coevaporated CH3NH3PbI3 Thin Films, „The Journal of Physical Chemistry C” 2015, 119(42), DOI: 10.1021/acs.jpcc.5b07676, s. 23996-24002.
- [51] Philippe B., Park B.W., Lindblad R., Oscarsson J., Ahmadi S., Johansson E.M.J., Rensmo H., Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures - A Photoelectron Spectroscopy Investigation, „Chemistry of Materials” 2015, 27(5), DOI: 10.1021/acs.chemmater.5b00348, s. 1720-1731.
- [52] Li D., Wang M., Stability Issues of Inorganic/Organic Hybrid Lead Perovskite Solar Cells, „Perovskite Solar Cells: Principle. Material and Devices. World Scientific” 2017.
- [53] De Wolf S., Holovsky J., Moon S.J., Loper P., Niesen B., Ledinsky M., Haug F.J., Yum J.H., Ballif C., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance, „The Journal of Physical Chemistry Letters” 2014, 5, DOI: /10.1021/jz500279b, s. 1035-1039.
- [54] Zhou H.P., Chen Q., Li G., Luo S., Song T.B., Duan H.S., Hong Z.R., You J.B., Liu Y.S., Yang Y., Interface Engineering of Highly Efficient Perovskite Solar Cells, „Science” 2014, 345, DOI: 10.1126/science.1254050, s. 542-546.
- [55] Mahal E., Mandal S.C., Pathak B., Understanding the role of spacer cation in 2D layered halide perovskites to achieve stable perovskite solar cells, „Materials Advances” 2022, 3, DOI: 10.1039/D1MA01135A, s. 2464-2474.
- [56] Xu H., A brief review on the moisture stability for perovskite solar cells, IOP Conference Series: Earth and Environmental Science 2020, 585, 012027, DOI: 10.1088/1755-1315/585/1/012027.
- [57] Niu G.D., Li W.Z., Meng F.Q., Wang L.D., Dong H.P., Qiu Y., Study on the Stability of CH3NH3PbI3 Films and the Effect of Post-Modification by Aluminum Oxide in All--Solid-State Hybrid Solar Cells, „Journal of Materials Chemistry A” 2014, 2, DOI: 10.1039/C3TA13606J, s. 705-710.
- [58] Zheng L., Chung Y.H., Ma Y., Zhang L., Xiao L., Chen Z., Wang S., Qu B., Gong Q., A Hydrophobic Hole Transporting Oligothiophene for Planar Perovskite Solar Cells with Improved Stability, „Chemical Communications” 2014, 50, DOI: 10.1039/C4CC04680C, s. 11196-11199.
- [59] Yang J., Siempelkamp B.D., Liu D., Kelly T.L., Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques, „ACS Nano” 2015, 9(2), DOI: 10.1021/nn506864k, s. 1955-1963.
- [60] Mesquita I., Andrade L., Mendes A., Effect of relative humidity during the preparation of perovskite solar cells: Performance and stability, „Solar Energy” 2020, 199, DOI: 10.1016/j.solener.2020.02.052, s. 474-483.
- [61] Li J., Xia R., Qi W., Zhou X., Cheng J., Chen Y., Hou G., Ding Y., Li Y., Zhao Y., Zhang X., Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization, „Journal of Power Sources” 2021, 485, 229313, DOI: 10.1016/j.jpowsour.2020.229313.
- [62] Corsini F., Griffini G., Recent progress in encapsulation strategies to enhance the stability of organometal halide perovskite solar cells, „Journal of Physics: Energy” 2020, 2, 031002, DOI: 10.1088/2515-7655/ab8774.
- [63] Zhao Y., Wei J., Li H. Yan Y., Zhou W., Yu D., Zhao Q., A polymer scaffold for self--healing perovskite solar cells, „Nature Communications” 2016, 7, 10228, DOI: 10.1038/ncomms10228.
- [64] Kim H., Lim K.G., Lee T.W., Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers, „Energy & Environmental Science” 2015, 9, DOI: 10.1039/C5EE02194D, s. 12-30.
- [65] Lee S.W., Kim S., Bae S., Cho K., Chung T., Hwang J.K., Song I., Lee W., Park S., Jung J., Chun J., Lee Y.J., Moon Y.J., Lee H.S., Kim D., Mo C.B., Kang Y., Enhanced UV stability of perovskite solar cells with a SrO interlayer, „Organic Electronics” 2018, 63, DOI: 10.1016/j.orgel.2018.09.019, s. 343-348.
- [66] Ito S., Tanaka S., Manabe K., Nishino H., Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells, „The Journal of Physical Chemistry C” 2014, 118(30), DOI: 10.1021/jp500449z, s. 16995--17000.
- [67] Gu B., Du Y., Fang S., Chen X., Li X., Xu Q., Lu H., Fabrication of UV-Stable Perovskite Solar Cells with Compact Fe2O3 Electron Transport Layer by FeCl3 Solution and Fe3O4 Nanoparticles, „Nanomaterials” 2022, 12, 4415, DOI: 10.3390/nano12244415.
- [68] Hong Q.M., Xu R.P., Jin T.Y., Tang J.X., Li Y.Q., Unraveling the light-induced degradation mechanism of CH3NH3PbI3 perovskite films, „Organic Electronics” 2019, 67, DOI: 10.1016/j.orgel.2019.01.005, s. 19-25.
- [69] Habisreutinger S.N., McMeekin D.P., Snaith H.J., Nicholas R.J., Research Update: Strategies for improving the stability of perovskite solar cells, „APL Materials” 2016, 4, 091503, DOI: 10.1063/1.4961210.
- [70] Qin C., Matsushima T., Klotz D., Takashi Fujihara T., Adachi C., The Relation of Phase-Transition Effects and Thermal Stability of Planar Perovskite Solar Cells, „Advanced Science” 2019, 6, 1801079, DOI: 10.1002/advs.201801079.
- [71] Whitfield P.S., Herron N., Guise W.E., Page K., Cheng Y.Q., Milas I., Crawford M.K., Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide, „Scientific Reports” 2016, 6, 35685, DOI: 10.1038/srep35685.
- [72] Ciccioli A., Latini A., Thermodynamics and the Intrinsic Stability of Lead Halide Perovskites CH3NH3PbX3, „The Journal of Physical Chemistry Letters” 2018, 9(13), DOI: 10.1021/acs.jpclett.8b00463, s. 3756-3765.
- [73] Kundu S., Kelly T.L., In situ studies of the degradation mechanisms of perovskite solar cells, „EcoMat” 2020, 2, e12025, DOI: 10.1002/eom2.12025.
- [74] Juarez-Perez E.J., Ono L.K., Maeda M., Jiang Y., Hawash Z., Qi Y., Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability, „Journal of Materials Chemistry A” 2018, 6, DOI: 10.1039/C8TA03501F, s. 9604-9612.
- [75] Yu X., Qin Y., Peng Q., Probe Decomposition of Methylammonium Lead Iodide Perovskite in N2 and O2 by in Situ Infrared Spectroscopy, „The Journal of Physical Chemistry A” 2017, 121(6), DOI: 10.1021/acs.jpca.6b12170, s. 1169-1174.
- [76] Jošt M., Lipovšek B., Glažar B., Al-Ashouri A., Brecl K., Matič G., Magomedov A., Getautis V., Topič M., Albrecht S., Perovskite Solar Cells go Outdoors: Field Testing and Temperature Effects on Energy Yield, „Advanced Energy Materials” 2020, 10, 2000454, DOI: 10.1002/aenm.202000454.
- [77] Knight A.J., Herz L.M., Preventing phase segregation in mixed-halide perovskites: a perspective, „Energy & Environmental Science” 2020, 13, DOI: 10.1039/D0EE00788A, s. 2024-2046.
- [78] Wang Y., Quintana X., Kim J., Guan X., Hu L., Lin C., Jones B., Chen W., Wen X., Gao H., Wu T., Phase segregation in inorganic mixed-halide perovskites: from phenomena to mechanisms, „Photonics Research” 2020, 8, DOI: 10.1364/PRJ.402411, s. A56-A71.
- [79] Mahesh S., Ball J.M., Oliver R.D., McMeekin D.P., Nayak P., Johnston M.B., Snaith H., Revealing the Origin of Voltage Loss in Mixed-Halide Perovskite Solar Cells, „Energy & Environmental Science” 2020, 13, DOI: 10.1039/C9EE02162K, s. 258-267.
- [80] McGovern L., Grimaldi G., Futscher M.H., Hutter E.M., Muscarella L.A., Schmidt M.C., Ehrler B., Reduced Barrier for Ion Migration in Mixed-Halide Perovskites, „ACS Applied Energy Materials” 2021, 12(4), DOI: 10.1021/acsaem.1c03095, s. 13431-13437.
- [81] Liang J., Hu X., Wang C., Liang C., Chen C., Xiao M., Li J., Tao C., Xing G., Yu R., Ke W., Fang G., Origins and influences of metallic lead in perovskite solar cells, „Joule” 2022, 6, DOI: 1016/j.joule.2022.03.005, s. 816-833.
- [82] Babayigit A., Ethirajan A., Muller M., Conings B., Toxicity of Organometal Halide Perovskite Solar Cells, „Nature Materials” 2016, 15, DOI: 10.1038/nmat4572, s. 247- 251.
- [83] Ravi V.K., Mondal B., Nawale V.V., Nag A., Don’t Let the Lead Out: New Material Chemistry Approaches for Sustainable Lead Halide Perovskite Solar Cells, „ACS Omega” 2020, 46(5), DOI: 10.1021/acsomega.0c04599, s. 29631-29641.
- [84] Konstantakou M., Stergiopoulos T., A critical review on tin halide perovskite solar cells, „Journal of Materials Chemistry A” 2017, 23(5), DOI: 10.1039/C7TA00929A, s. 11518-11549.
- [85] Ke W., Stoumpos C.C., Kanatzidis M.G., „Unleaded” Perovskites: Status Quo and Future Prospects of Tin-Based Perovskite Solar Cells, „Advanced Materials” 2018, 31, 1803230, DOI: 10.1002/adma.201803230.
- [86] Ren M., Qian X., Chen Y., Wang T., Zhao Y., Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics, „Journal of Hazardous Materials” 2022, 426, 127848, DOI: 10.1016/j.jhazmat.2021.127848.
- [87] Pengyu Z., Menglin L., Wen-Cheng C., A Perspective on Perovskite Solar Cells: Emergence, Progress, and Commercialization, „Frontiers in Chemistry” 2022, 10, DOI: 10.3389/fchem.2022.802890.
- [88] Siegler T.D., Dawson A., Lobaccaro P., Ung D., Beck M.E., Nilsen G., Tinker L.L., The Path to Perovskite Commercialization: A Perspective from the United States Solar Energy Technologies Office, „ACS Energy Letters” 2022, 7(5), DOI: 10.1021/acsenergylett.2c00698, s. 1728-1734.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6900110c-59b4-4ac6-9798-94f403eb8859
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.