Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Równoważenie wskaźników niezawodności i kosztów utrzymania elementów wielostanowych z pominięciem przedziału wystąpienia uszkodzenia
Języki publikacji
Abstrakty
For the repairable multi-state component, reliability indexes are analyzed based on a homogenous Continuous Time Markov Chain (CTMC). If the component can work well when its repair time is sufficiently short, a threshold value for maintenance is introduced. When the fault interval is less than threshold time, the fault effect is considered neglected. In this paper, comparisons of availability show differences of the new model and the original model with or without fault interval omission. In addition, balancing the maintenance cost and lifetime of multi-state components is an important issue when threshold values are considered. Both constants and non-negative random variables are modeled respectively. Finally, numerical examples are presented to illustrate the results obtained in this paper.
W przypadku naprawialnych elementów wielostanowych, wskaźniki niezawodności analizuje się w oparciu o łańcuch Markowa z czasem ciągłym. Jeśli element może działać prawidłowo, mimo uszkodzenia, dzięki wystarczająco krótkiemu czasowi naprawy, wprowadza się próg czasowy dla konserwacji. Gdy przedział czasu, w którym następuje uszkodzenie jest krótszy niż próg czasowy dla działań konserwacyjnych, wpływ uszkodzenia uważa się za nieistotny. Przeprowadzone w niniejszym artykule porównania gotowości wykazały różnice między nowym modelem a modelem oryginalnym z pominięciem lub bez pominięcia przedziału wystąpienia uszkodzenia. Ponadto, przy rozważaniu wartości progowych, ważną kwestią jest równoważenie kosztów utrzymania i żywotności elementów wielostanowych. W pracy próg wystąpienia uszkodzenia zamodelowano, odpowiednio, zarówno jako wartość stałą jak i nieujemną zmienną losową. Na koniec przedstawiono przykłady ilustrujące wyniki przedstawionych badań.
Czasopismo
Rocznik
Tom
Strony
37--45
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- College of Economics and Management Nanjing University of Aeronautics and Astronautics Nanjing 211106, Jiangsu, PR China
autor
- College of Economics and Management Nanjing University of Aeronautics and Astronautics Nanjing 211106, Jiangsu, PR China
autor
- College of Economics and Management Nanjing University of Aeronautics and Astronautics Nanjing 211106, Jiangsu, PR China
autor
- College of Economics and Management Nanjing University of Aeronautics and Astronautics Nanjing 211106, Jiangsu, PR China
autor
- College of Economics and Management Nanjing University of Aeronautics and Astronautics Nanjing 211106, Jiangsu, PR China
Bibliografia
- 1. Bao X, Cui L. An Analysis of Availability for Series Markov Repairable System With Neglected or Delayed Failures. IEEE Transactions on Reliability 2010; 59(4):734-743, https://doi.org/10.1109/TR.2010.2055915.
- 2. Caldarod L. Coherent systems with multistate components. Nuclear Engineering & Design 1980; 58(1):127-139, https://doi.org/10.1016/0029- 5493(80)90102-8.
- 3. Calderhead B, Epstein M, Sivilotti L, et al. Bayesian Approaches for Mechanistic Ion Channel Modeling. Methods Mol Biol. 2013; 1021: 247-272, https://doi.org/10.1007/978-1-62703-450-0_13.
- 4. Calimet N, Simoes M, Changeux J P, et al. A gating mechanism of pentameric ligand-gated ion channels. Proceedings of the National Academy of Sciences of the United States of America 2013; 110 (42): 3987-3996, https://doi.org/10.1073/pnas.1313785110.
- 5. Cui L, Zhang Q, Kong D. Some New Concepts and Their Computational Formulae in Aggregated Stochastic Processes with Classifications Based on Sojourn Times. Methodology & Computing in Applied Probability 2015; 18(4): 1-21.
- 6. Dong W, Liu S, Fang Z et al. A model based on hidden graphic evaluation and review technique network to evaluate reliability and lifetime of multi-state systems. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2018, https://doi. org/10.1177/1748006X18788414.
- 7. Grabski F. Semi-Markov Processes: Applications in System Reliability and Maintenance. Graphical models and image processing. Academic Press 2014: 161-176.
- 8. He Q M. Fundamentals of Matrix-Analytic Methods. Springer New York, 2014, https://doi.org/10.1007/978-1-4614-7330-5.
- 9. He Q, Zha Y, Zhang R et al. Reliability analysis for multi-state system based on triangular fuzzy variety subset bayesian networks. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19(2): 152-165, https://doi.org/10.17531/ein.2017.2.2.
- 10. Hirose H, Sakumura T. The Extended Cumulative Exposure Model (ECEM) and Its Application to Oil Insulation Tests. IEEE Transactions on Reliability 2012; 61(3): 625-633, https://doi.org/10.1109/TR.2012.2207575.
- 11. Cao J H, Cheng K. Introduction to Reliability Mathematics. Beijing: Science Press, 1986, (In Chinese).
- 12. Jia X, Shen J, Xing R. Reliability Analysis for Repairable Multistate Two-Unit Series Systems When Repair Time Can Be Neglected. IEEE Transactions on Reliability 2016; 65(1): 208-216, https://doi.org/10.1109/TR.2015.2461218.
- 13. Levitin G. The Universal Generating Function in Reliability Analysis and Optimization. Springer, 2005.
- 14. Levitin G, Amari S V. Multistate systems with multi-fault coverage. Reliability Engineering & System Safety 2017; 93 (11): 1730-1739, https://doi.org/10.1016/j.ress.2007.12.004.
- 15. Li M, Ma X, Zhang X et al. Reliability analysis of non-repairable cold-standby system based on the Wiener process. International Conference on System Reliability and Safety 2017: 151-155.
- 16. Lisnianski A, Elmakias D, Laredo D et al. A multi-state Markov model for a short-term reliability analysis of a power generating unit. Reliability Engineering & System Safety 2017; 98(1): 1-6, https://doi.org/10.1016/j.ress.2011.10.008.
- 17. Lisnianski A, Frenkel I, Karagrigorious A. Recent Advances in Multi-state Systems Reliability. Springer 2018, https://doi.org/10.1007/978- 3-319-63423-4.
- 18. Liu B, Cui L, Wen Y. Interval reliability for aggregated Markov repairable system with repair time omission. Annals of Operations Research 2014; 212(1): 169-183, https://doi.org/10.1007/s10479-013-1402-8.
- 19. Pan D, Liu J B, Huang F, et al. A Wiener Process Model With Truncated Normal Distribution for Reliability Analysis. Applied Mathematical Modelling 2017; 50: 333-346.
- 20. Pham T, Pham H. A generalized software reliability model with stochastic fault-detection rate. Annals of Operations Research 2017; (4): 1-11, https://doi.org/10.1007/s10479-017-2486-3.
- 21. Pirious P Y, Faure J M, Lesage J J. Generalized Boolean logic Driven Markov Processes: A powerful modeling framework for Model-Based Safety Analysis of dynamic repairable and reconfigurable systems. Reliability Engineering & System Safety 2017; 163: 57-68, https://doi. org/10.1016/j.ress.2017.02.001.
- 22. Qin J, Niu Y, Li Z. A combined method for reliability analysis of multi-state system of minor-repairable components. Eksploatacja i Niezawodnosc- Maintenance and Reliability 2016; 18 (1): 80-88, https://doi.org/10.17531/ein.2016.1.11.
- 23. Wang W, Maio F D, Zio E. Three-Loop Monte Carlo Simulation Approach to Multi-State Physics Modeling for System Reliability Assessment. Reliability Engineering & System Safety 2017; 167: 276-289, https://doi.org/10.1016/j.ress.2017.06.003.
- 24. Bao X Z, Cui L. A Study on Reliability for A Two-Item Cold Standby Markov Repairable System with Neglected Failures. Communications in Statistics 2012; 41(21): 3988-3999, https://doi.org/10.1080/03610926.2012.700376.
- 25. Yu H, Yang J, Mo H. Reliability analysis of repairable multi-state system with common bus performance sharing. Reliability Engineering & System Safety 2014; 132: 90-96, https://doi.org/10.1016/j.ress.2014.07.017.
- 26. Zaitseva E, Levashenko V. Multiple-Valued Logic mathematical approaches for multi-state system reliability analysis. Journal of Applied Logic 2013; 11(3): 350-362, https://doi.org/10.1016/j.jal.2013.05.005.
- 27. Zhang C, Lu X, Tan Y, et al. Reliability demonstration methodology for products with Gamma Process by optimal accelerated degradation testing. Reliability Engineering & System Safety, 2015; 142:369-377, https://doi.org/10.1016/j.ress.2015.05.011.
- 28. Zhang Q, Cui L, Yi H. A study on a single-unit repairable system with working and repair time omission under an alternative renewal process. Journal of Risk & Reliability 2017; 231(1): 1748006X1769351.
- 29. Zhao X, Qian C, Nakagawa T. Comparisons of Replacement Policies with Periodic Times and Repair Numbers. Reliability Engineering & System Safety 2017; 168: 161-170, https://doi.org/10.1016/j.ress.2017.05.015.
- 30. Zheng Z, Cui L, Hawkes A G. A study on a single-unit Markov repairable system with repair time omission. IEEE Transactions on Reliability 2006; 55(2): 182-188, https://doi.org/10.1109/TR.2006.874933.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68fa1a65-b3a0-4f27-a6b1-3a398ac53792