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1. Introduction

In practice many components and systems exhibit more than two 
output performances, these systems are called multi-state systems 
(MSSs) [6, 9, 10, 22]. Since the mid-1970s, numerous researches have 
been conducted which focus on MSS reliability [2]. Four commonly 
used approaches about MSS reliability have been formed gradually: 
the extension of Boolean model [26], stochastic process theory [18], 
universal generating function (UGF) technology [13,14] and Monte-
Carlo simulation [23].

As to the stochastic process theory used in reliability analysis of 
MSSs, when the numbers of failures between arbitrary time intervals 
can be described as a Poisson process, Markov processes are often 
introduced to solve these questions [16, 20, 21]. When the operat-
ing time and repair time are non-exponentially distributed, a Semi-
Markov process is often considered [7]. Besides Markov processes 
and Semi-Markov processes, the Wiener process [15, 19], the Gamma 
process [27] and the cumulative exposure process [10] are also con-
sidered in MSS reliability modelling. Research about MSS reliability 

has been a highlight topic in recent years and many new achievements 
are constantly emerging [17].

Studying on Markov repairable systems has always been an active 
branch in reliability theory. Jinhua Cao [11] studied the general model 
of Markov repairable systems, concluded the reliability analysis steps 
and deduced reliability indexes of voting systems, cold standby sys-
tems and warm standard systems. Cui et al. [5] proposed the definition 
of aggregated stochastic processes and applied into reliability analysis 
of repairable systems. Lisnianski [17] constructed a Markov reward 
model for reliability assessment of a multi-state system with variable 
demand. In his study, the process was assumed to be a homogenous 
Continuous Time Markov Chain (CTMC) with different possible 
states and corresponding transition possibility intensities. Other stud-
ies of reliability of multi-state systems using stochastic processes can 
be found in [25] and [29].

For a Markov repairable component containing N  dif-
ferent output states, i.e., whose output performance is 

1 1( ) ( ) ( ) ( ) 0s s NG t G t w G t G t+> ≥ > > > =  , as ( ) 0NG t = , so 
when output performance rate enters the N th−  state, fault occurs. 
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Równoważenie wskaźników niezawodności 
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z pominięciem przedziału wystąpienia uszkodzenia

For the repairable multi-state component, reliability indexes are analyzed based on a homogenous Continuous Time Markov 
Chain (CTMC). If the component can work well when its repair time is sufficiently short, a threshold value for maintenance is 
introduced. When the fault interval is less than threshold time, the fault effect is considered neglected. In this paper, comparisons of 
availability show differences of the new model and the original model with or without fault interval omission. In addition, balanc-
ing the maintenance cost and lifetime of multi-state components is an important issue when threshold values are considered. Both 
constants and non-negative random variables are modeled respectively. Finally, numerical examples are presented to illustrate 
the results obtained in this paper.
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W przypadku naprawialnych elementów wielostanowych, wskaźniki niezawodności analizuje się w oparciu o łańcuch Markowa 
z czasem ciągłym. Jeśli element może działać prawidłowo, mimo uszkodzenia, dzięki wystarczająco krótkiemu czasowi naprawy, 
wprowadza się próg czasowy dla konserwacji. Gdy przedział czasu, w którym następuje uszkodzenie jest krótszy niż próg czasowy 
dla działań konserwacyjnych, wpływ uszkodzenia uważa się za nieistotny. Przeprowadzone w niniejszym artykule porównania 
gotowości wykazały różnice między nowym modelem a modelem oryginalnym z pominięciem lub bez pominięcia przedziału wy-
stąpienia uszkodzenia. Ponadto, przy rozważaniu wartości progowych, ważną kwestią jest równoważenie kosztów utrzymania i ży-
wotności elementów wielostanowych. W pracy próg wystąpienia uszkodzenia zamodelowano, odpowiednio, zarówno jako wartość 
stałą jak i nieujemną zmienną losową. Na koniec przedstawiono przykłady ilustrujące wyniki przedstawionych badań.

Słowa kluczowe:	 systemy wielostanowe (MSS); pominięcie wpływu uszkodzenia; proces stochastyczny; model 
naprawialny; polityka utrzymania ruchu.
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Maintenance is arranged immediately and after each repair, the com-
ponent can return to the best state 1. When the component transfers 
from working states 1,2, , s  to N  and the repair time Y  is less 
than a critical value τ, we consider the fault doesn’t affect the output 
performance during the very short interval. For example, a daily water 
supply system exhibits plenty of output performances. If failure occurs 
and the system is repaired perfectly in a very short time interval, fault 
effect is neglected because the water reserved in the pipes is sufficient 
for the urban residents. That phenomenon is firstly noticed in [30] in 
2006. Zheng et.al [30] studied a single-unit Markov repairable system 
with repair time omission and introduced a new stochastic process. 
By means of Ion-Channel theory [3, 4], she modeled the repairable 
system with repair time omission. Based on Zheng’s research, other 
scholars expand her model to several components [1, 12, 18, 24, 28]. 
This paper tries to expand Zheng’s conclusions to multiple states and 
will be more useful for actual multi-state repairable systems.

In this paper, we deduce reliability indexes according to the re-
lationship between output performance and demand. Assuming that 
system performance keeps stationary when fault time is less than the 
threshold value, this paper builds a new stochastic process consider-
ing the neglected fault effect based on the original Markov process. 
Image in a power supply system, though output power capacity is 
lower than the demand, the system may not fail immediately due to 
some accumulators or external power sources. So we can think the 
system is still operating during the very short time. That is similar to 
the time-interval omission problem in Ion-Channel theory [3, 4].

In general, the organization of this paper is as follows. Sec-
tion 2 deduces reliability indexes such as the instantaneous availabil-
ity, steady-state availability, reliability and mean time to first failure 
(MTTFF) of the multi-state Markov repairable component. Section 3 
builds a new stochastic process considering neglected fault effect and 
compares the change of reliability indexes. Both constants and non-
negative random variables of the fault threshold are modelled. In sec-
tion 4, numerical examples are given to clarify the comparisons of 
two different stochastic processes. Finally, we get conclusions in this 
paper in section 5.

2. Multi-state repairable components

In a multi-state component containing (0 )N N< < +∞  states, out-
put performance rate at time t  is 1 2{ ( ), ( ), , ( )}NG t G t G t∈G(t)  and 
its corresponding state possibility is 1 2{ ( ), ( ), , ( )}NP t P t P t∈P(t)  . 
When system demand ( )w t  is a constant, i.e., ( )w t w≡ [13]. Suppose 

1( ) ( ), 1s sG t w G t N s+≥ > > ≥ , Fig. 1 shows a possible behavior of 
MSS performance and demand as the realizations of a stochastic pro-
cess. In this paper, the original system is referred as the old stochastic 
process while the new system considers neglected fault effect.

2.1.	 Assumptions

Before we construct a Markov process for the multi-state repair-
able component, some proper assumptions should be given.

(1) Suppose 1 1( ) ( ) ( ) ( ) 0s s NG t G t G t G t+> > > > =  , the com-
ponent has two styles of failures including major failure and minor 
failure. When fault comes, repair is arranged immediately. The system 
can reach the best state 1 after each maintenance, which is shown in 
Fig. 2.

(2) The residence time at each state and the repair time have in-
dependent exponential distributions, i.e., 12 13 1,, , , N Nλ λ λ − and µ in 
Fig. 2 are constants and they are independent. 

2.2.	 Reliability indexes

The possibility when the component is in state ( 1,2, , )j j N= 

at time t  is ( )jP t , let ( ) ( ( ) )jP t P X t j= = , then { ( ), 0}X t t ≥
is a homogenous Markov Chain based on the assumptions above 
and ( ) ( ( ) ( ) )ijP t P X t t j X t i∆ = + ∆ = =  is independent of t  . 
Suppose the component is at its best output at 0t = , that is, 

1 2(0) 1, (0) 0, , (0) 0NP P P= = = . According to Chapman-Kolmog-
orov (C-K) equations [8], Eq.(1) is obtained:

	 1 2 1 2

1 2

( '( ), '( ), , '( )) ( ( ), ( ), , ( ))
(0) 1, (0) 0, , (0) 0

N N

N

P t P t P t P t P t P t Q
P P P

=
 = = =

 



	 (1)

In Eq. (1), Q  is called the transition possibility intensity matrix 

and ( ); , 1,2, ,ijQ q i j N= =  , where 
0

( )
lim ,ij

ij
t

P t
q i j

t∆ →

∆
= ≠

∆
. From 

Fig. 2, Q  can be easily obtained:
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where 1 1 2 2 1 1, 1,
2 3

, , ,
N N N

j j N N j N N
j j j N

λ λ λ λ λ λ λ− − −
= = =

= = = =∑ ∑ ∑ . 

Therefore, Eq.(1) becomes:

Fig. 1. A MSS behavior described with a stochastic process

Fig. 2. State transmission process of the multi-state component
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After Laplace transform and inverse Laplace transform, 

1 2( ), ( ), , ( )NP t P t P t  are obtained.

We use ( )A t  to denote the instantaneous availability of the com-
ponent at time t , then:

	
1

( ) ( ) ( )
s

j j
j w

A t P t P t
= ≥

= =∑ ∑
G(t)

	 (3)

Steady-state availability A  represents the ratio whether output 
performance G(t)  satisfies demand w  after a long service time:

	 lim ( )
t

A A t
→∞

= 	 (4)

Also, for the Markov process, we can get A  from the following 
equations:

	

( , , , ) ( , , , )π π π

π

1 2

1

0 0 0

1

 N

j
j

N

Q =

=









=
∑

	 (5)

In which π π π1 2, , , N  is the limiting distribution (stationary dis-

tribution) of 1 2( ), ( ), , ( )NP t P t P t . Thus:

	 A j
j

s
=

=
∑π

1
	 (6)

When reliability ( )R t  of the multi-state component is required, 

we can introduce a new Markov process 
^

{ ( ), 0}X t t ≥ . The state 

space {1,2, , }S N=   can be divided into two parts: {1,2, , }aS s=   , 

{ 1, 2, , }bS s s N= + +   and a bS S S= ∪ . aS  is called an ac-

ceptable state subset while bS  an unacceptable state subset. Let 
^

( ) ( ( ) ), 1,2, ,jQ t P X t j j s= = =  , then we get a new C-K equation:

	
^

1 2 1 2

1 2

( '( ), '( ), , '( )) ( ( ), ( ), , ( ))
(0) 1, (0) 0, , (0) 0
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N
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 



	 (7)

^
Q  comes from Q  and:
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It means states 1, 2, ,s s N+ +  are regarded as absorbing states, 

then we can get 1( ), , ( )sQ t Q t  as:
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(8)

So ( )R t is obtained as:

	
1

( ) ( )
s

j
j

R t Q t
=

= ∑ 	 (9)

Mean time to first failure (MTTFF) is:

	
0 0

1
( ) ( )

s
j

j
MTTFF R t dt Q t dt∞ ∞

=
= = ∑∫ ∫ 	 (10)

3. Reliability with neglected fault effect

In this paper, two situations are considered for the threshold 
τ :τ  is a constant and τ  is a non-negative random variable with its 
distribution function ( )H τ .

3.1.	 The threshold is a constant

Here we introduce a new stochastic process 
~

{ ( ), 0}X t t ≥ when 
considering neglected fault effect and:

	
~ 1,

( )
0,

when the system is up
X t

when the system is down


= 


	 (11)

Obviously, the new stochastic process
~

{ ( ), 0}X t t ≥  has a tight 
connection with { ( ), 0}X t t ≥ but it is not a Markov process any more. 
Fig. 3 shows the relationship between the two stochastic processes ~
{ ( ), 0}X t t ≥ and { ( ), 0}X t t ≥ .

For 
~

{ ( ), 0}X t t ≥ , the instantaneous availability becomes:
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( ( ) 1, ( ) )
N

i
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=

= =
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= = =∑



    (12)

From Fig. 3, when the original system is at state 1 1( 1,2, , )i i s=   , 
the new system is always operating. When the original system is at 
state 2 2( 1, 2, , 1)i i s s N= + + − , the new system is always down. 
When the system transfers from state 3 3( 1,2, , 1)i i N= −  to state 
N  , the system can works well as long as the repair time is less than 

fault threshold τ . Therefore, Eq.(12) becomes:
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(13)

The 1st part of the last equation in Eq.(13) 
1

1
1

( ( ) )
s

i
P X t i

=
=∑  is 

( )A t  in Eq.(2). So Eq.(13) becomes:

	
~ ~

( ) ( ) ( ( ) 1, ( ) )A t A t P X t X t N= + = = 	 (14)

As for 
~

( ( ) 1, ( ) )P X t X t N= = , it represents that the original sys-
tem is under repair while the repair time is less than the threshold τ  , 
as shown in Fig.4. For the original system, 

~
( ( ) 1, ( ) )P X t X t N= =  is 

associated tightly with the nearest state before N . Here we use j Np →

to represent the transmission possibility of state ( 1,2, , 1)j j N= −

to state N .

From Fig. 4, if the nearest state before N  is 1 1( 1,2, , )i i s=  , 
as 1 2( ) ( ) ( )sG t G t G t w> > > ≥ , so when the repair time is no lon-
ger than τ , the fault is neglected. If the nearest state before N  is 

2 2( 1, 2, , 1)i i s s N= + + − , as 1 2 1( ) ( ) ( )s s Nw G t G t G t+ + −> > > >  , 
so no matter how short τ  is, the repair time cannot be neglected.
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∑

    (15)

In which Y  is the repair time and it’s exponentially distributed 
with ~ ( ) 1 tY G t e µ−= − , so ( ) vP v Y e eµ µττ − −< < = − . The instan-

taneous availability 
~

( )A t  becomes:

~ min( , ) 2
1 0

1

1

1( ) ( ) ( ) ( )
s t

i iNN
i

jN
j

A t A t P t v P v Y dvτ τ λ
λ

−
=

=

 
= + − < < 

 
∑∫

∑
   (16)

The steady-state availability 
~
A  can be deduced when t →∞ , and 

obviously min( , )t τ τ= at this time.

Fig. 4. The original system is under repair and the repair time is less than τ

Fig. 3. Relationship between the two stochastic processes
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3.2.	 The threshold is a random variable

When τ  is a nonnegative random variable with its distribution 
function is ( )H τ , Eq.(15) becomes:

~
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And 
~

( )A t  is:

~ min( , ) 2
1 0 0

1

1

1( ) ( ) ( ) ( ) ( )
s t

i iNN
i

jN
j

A t A t P t v P v Y dvdHτ τ λ τ
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∞
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=

=

 
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∑
   (18)

The steady-state availability becomes:

	
~ ~

lim ( )
t

A A t
→∞

= 	 (19)

From above equations, when neglected fault effect is considered 
for a multi-state repairable component, availabilities (instantaneous 
availability and steady-state availability) are obviously higher than 
the ones in the original system. It is rational for certain conditions. 
Consider a flow transmission system which transfers liquid through 
pipes. For such a multi-state system, even when the system reaches 
a complete failure state, as long as the failure time is short enough 
to affect the output performance, the flow reserved in the pipes can 
satisfy the demand and at this very moment we regard the repair time 
ignorable or the fault effect neglected. So the system can work more 
hours than before when fault interval omission is considered.

3.3.	 Optimum maintenance cost rate

When fault interval omission of multi-state components is con-
sidered, different maintenance thresholds 1 2, , , nτ τ τ  are introduced. 
Under various 1 2, , , nτ τ τ , the lifetime of multi-state components is 

1 2, , , nT T T  respectively. As τ  grows, though the lifetime T  pro-
longs, the maintenance cost increases accordingly when fault incurs. 
Therefore, how to optimize the maintenance cost under different life-
time 1 2, , , nT T T  with respect to thresholds 1 2, , , nτ τ τ  becomes sig-
nificant in reliability engineering.

Suppose the total maintenance cost ( )C t  of a multi-state com-
ponent contains replacement cost ( )fc t

 
and preventive cost ( )pc t

 
, 

depreciation rate of the component is ( 0)α α > . At the initial moment 
(0)f fc c= , then total maintenance cost ( )C t  becomes:

	
( ) ( 1)t t

f pC t c e c eα α−= + − 	 (20)

During the whole life cycle (0, ]T  of the multi-state component, 
the tendency of maintenance cost ( )C t  changes with time (0, ]t T∈  , 
as shown in Fig. 5.

The approach to get the best maintenance moment *T is to dif-
ferential ( )C t with respect to t , i.e.,

	
* (1 / 2 )ln( / )f pT c cα= 	 (21)

Then according to the best *T , the best maintenance threshold 
*τ  is obtained.

4. Illustrative examples

To illustrate the results obtained above in this paper, we consider a 
power generation system which contains four different output perform-
ance levels. Its output performance G(t) ( 1s− ) can be denoted as the 
generating capacity and 1 2 3 4( ) 100, ( ) 80, ( ) 60, ( ) 0G t G t G t G t= = = = . 
Obviously, the power generator is a multi-state unit and state 1 shows 
the perfect output while state 4 is the complete failure state. After 
statistical analysis, the failure rates ( 1year− ) are:

	 12 13 14 23 24 341, 2, 1, 1, 2, 1λ λ λ λ λ λ= = = = = =

Assume that repair is implemented immediately when the system 
reaches state 4 and the repair rate 16yearµ −= . Demand of the sys-
tem is 150w s−=  and the system is in the best state 1 at beginning. 
Let ( ) { ( ) }, 1,2,3,4jP t P X t j j= = = , and obviously { ( ), 0}X t t ≥  is a 
homogenous CTMC. Probability intensity matrix of { ( ), 0}X t t ≥  is:

	

4 1 2 1
0 3 1 2
0 0 1 1
6 0 0 6

Q

− 
 − =
 −
 

− 

According to Eq.(1), 4.732 2.268
1( ) 0.231 0.651 0.118t tP t e e− −= + +  ,

4.732 2.268
2( ) 0.077 0.238 0.161t tP t e e− −= − +  ,	  

4.732 2.268
3( ) 0.538 0.225 0.314t tP t e e− −= − −  ,	  

4.732 2.268
4( ) 0.154 0.188 0.034t tP t e e− −= − + .

For the original Markov process, according to Eq. (3), instanta-
neous availability ( )A t  is:

Fig. 5. Tendency of maintenance cost C(t) with t
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1 2 3

4.732 2.268

( ) ( ) ( ) ( ) ( )

0.846 0.188 0.034

i
w

t t

A t p t p t p t p t

e e

≥

− −

= = + +

= + −

∑
G(t)

Also we can get the steady-state availability A  when t →∞  , i.e., 
lim ( ) 0.846
t

A A t
→∞

= = . As for the reliability ( )R t of the original sys-

tem, according to Eqs. (7) and (8), a new stochastic process 
^

{ ( ), 0}X t t ≥  can be defined and:

	
3 4( ) 0.833 0.5 0.333t t tR t e e e− − −= + −

which is shown as Fig. 6.

From Eq. (10), MTTFF of the multi-state component is:

3 4
0 (0.833 0.5 0.333 ) 0.916 330t t tMTTFF e e e dt year days∞ − − −= + − = ≈∫

When the failure time is too short to be detected or the fault will 
not affect the component’s output performance, we can set a threshold 
value τ  for the maintenance. In fact, this phenomenon is rather com-
mon in fault-tolerant design. When we use a program or software in 
a personal computer, we may endure “program nonresponse” for sev-
eral seconds (similar to τ ). As long as the program or software works 
well during τ , the short fault time can be ignored and does not affect 

the PC’s performance. Here a new stochastic process 
~

{ ( ), 0}X t t ≥
which contains only two states is introduced and first we consider τ
a constant 0.6.

From Eqs.(15) and (16), the instantaneous availability of 
~

{ ( ), 0}X t t ≥  is:

~ ~ 4.732 2.268( ) ( ) ( ( ) 1, ( ) 4) 0.9805 0.1716 0.0082t tA t A t P X t X t e e− −= + = = = + −

Obviously, when t →∞ , t  is always larger than τ , so 
~ ~

lim ( ) 0.9805
t

A A t
→∞

= = . Fig. 7 shows the change of instantaneous 

availabilities of two conditions when 0.6τ = .

In addition, when we have different variable τ , availability of the 
new system will definitely not be the same. Fig. 8 shows the change of 
availabilities with different maintenance threshold values with respect 
to 0,0.2,0.4,0.6τ = .

From Fig.8, the higher τ  is, the larger the steady-state availability ~
A  will be. When 0τ = , the new system is equal to the original sys-

tem and the new stochastic process is the old Markov process itself. 
When τ →∞ , the system will never fail as long as its output perfor-
mance is larger than demand.

Then we consider the failure threshold τ  is a random variable 
with a Gamma distribution. Suppose the density function of τ  is 

1( )
( )

f e
α

α λτλτ τ
α

− −=
Γ

 and 1, 2α λ= = , 2( ) 2dH e dττ τ−= . Accord-

ing to Eqs.(17) and (18), 
~

( )A t  becomes:

~ ~

16.732 12 10.268 8.732 8

6.732 4.732 4.628 2.268

( ) ( ) ( ( ) 1, ( ) 4)

0.9325 0.0688 0.065 0.097 0.0038 1.0722

1.1057 0.1727 0.1683 0.0175

t t t t t

t t t t

A t A t P X t X t

e e e e e

e e e e

− − − − −

− − − −

= + = =

= − + − + −

+ + + −

Fig. 6. Availability and Reliability of the multi-state component

Fig. 7. Change of instantaneous availability when τ = 0.6

Fig. 8. Change of instantaneous availability with τ = 0.6, 0.4, 0.2, 0
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Fig.9 shows the change of availability when τ  obeys a Gamma 

distribution (1,2)Ga . The steady-state availability is 
~

0.9325A = .

From Fig. 9, we can see that the steady-state availability becomes 
0.9325 compared with the original steady-state availability 0.846. The 
rational explanation is that we ignore some fault effect when the re-
pair time is less than τ . As a matter of fact, steady-state availability 
reflects the working proportion of the power generator. Fig. 10 shows 
the change of steady-state availabilities when fault interval omission 
is considered or not.

Next we’ll consider the effect on maintenance cost ( )C t  of fault 
interval τ , including constants 0,0.2,0.4,0.6  and random variable 
with distribution function ( )H τ . Suppose the initial replacement cost 
of the power generation system 100£fc =  and the initial preventive 
cost 6£ 0pc = , according to Eq.(18), ( ) 100 60( 1)t tC t e eα α−= + − .

Depreciation rate ( 0)α α > is set by reliability engineers and 
after a serious evaluation of the power generator, 48 10α −= ×
is suggested. According to Eq.(19), the best maintenance moment 

* (1 / 2 )ln( / ) 319.27f pT c cα= =  days. From Fig. 10, when the fault 
interval 0τ = , 0 304.56T =  days. As τ  grows from 1 0.2τ =  to 

2 0.4τ =  and 3 0.6τ = , lifetime of the power generator increases from 
1 323.24T =  days to 2 342.87T =  days and 3 352.98T =  days. Similar-

ly, maintenance cost rises from 1 2£( ) 94.9C T =  to 2 7£( ) 94.94C T =  
and 3 6£( ) 94.97C T = .

On one aspect, the lifetime of the power generator can prolong as 
τ  grows, while the maintenance cost rises correspondingly. Choosing 
an appropriate threshold value τ  for the fault interval can not only ex-
tend the equipment’s lifetime but also manage the maintenance cost. 
In this illustrative example, the best threshold interval *τ  should be 

*0 0.2τ< <  and that parameter is of vital importance to make proper 
maintenance policies.

5. Conclusions

In this paper, we build a Markov process for the multi-state repair-
able component which contains N  output performances based on a 
homogenous CTMC. Under the assumption that residence time and 
repair time are exponentially distributed, Kolmogorov equations are 
built. Based on the possibility of each state of the multi-state com-
ponent, availability, reliability and mean time to first failure are de-
duced.

When the fault time is too short to be detected, a new stochastic 
process considering neglected fault effect is determined. Though it is 
associated with the original system tightly, it is not a Markov process 
any more. When the threshold failure time is a constant or a random 
variable, we compare the change of instantaneous availability. Nu-
merical examples show that the availability will be larger when repair 
time omission is considered. At the same time, when maintenance cost 
is introduced, the best policy of choosing an appropriate threshold is 
to balance the maintenance cost and the lifetime.

Relevant results can also be used in queuing theory and manage-
ment science. For example, in a queuing theory problem, whether a 
customer leaves or not depends on the tolerant interval one can ac-
cept. If the endurable time is extremely long, no matter how many 
people are queuing before him or her, one will always wait for his or 
her service. At the same time, with the increasing of state numbers, 
state exploration will definitely come up. Markov method may have 
a problem in solving differential functions and universal generating 
function (UGF) technology [13] can be considered. Therefore, the 
future emphasis is on the mixture of Markov process and UGF with 
neglected fault effect or delayed failures.
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