PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of a Multifunctional Intelligent Elbow Brace (MIEB) Using a Knitted Textile Strain Sensor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Passive smart textiles are the textile structures that can sense stimuli, which may come from mechanical, thermal, electrical, or chemical sources. Textile strain sensors are smart textiles products in which the sensor’s resistance changes with applied strain. This study consists in the development of a textile strain sensor and its application on a Multifunctional Intelligent Elbow Brace (MIEB). The hand-knitted sensor was developed using knitting needles. The material used for this sensor was conductive yarn and lycra. The sensor developed was subjected to a stretch recovery test using a universal testing machine,, and the electrical resistance was measured using an electrical multimeter. The sensor developed has good sensing ability against cyclic loading and unloading at a 5%, 20%, 35% strain level. After testing, the sensor was stitched on an elbow brace to develop an MIEB. This study involved the best economical method for measuring the bowling angle of the player using this MIEB without any need for a biomechanical test, which is very expensive. This MIEB can also be used for rehabilitation purposes and for monitoring joint movement.
Rocznik
Strony
22--30
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • National Textile University Karachi Campus, Faculty of Engineering and Technology, Department of Textile and Clothing, Industrial Area Korangi, Karachi 74900, Pakistan
autor
  • Hanoi University of Science and Technology, School of Textile – Leather and Fashion, Veit Nam
  • Baluchistan University of Information Technology Engineering and Management Sciences, Faculty of Engineering, Department of Textile Engineering and Fashion Design, Quetta 87300, Pakistan
  • Baluchistan University of Information Technology Engineering and Management Sciences, Faculty of Engineering, Department of Textile Engineering and Fashion Design, Quetta 87300, Pakistan
  • National Textile University Karachi Campus, Faculty of Engineering and Technology, Department of Textile and Clothing, Industrial Area Korangi, Karachi 74900, Pakistan
  • National Textile University, Faculty of Engineering, Department of Fabric Manufacturing, Faisalabad, 37610, Pakistan
autor
  • National Textile University Karachi Campus, Faculty of Engineering and Technology, Department of Textile and Clothing, Industrial Area Korangi, Karachi 74900, Pakistan
  • National Textile University Karachi Campus, Faculty of Engineering and Technology, Department of Textile and Clothing, Industrial Area Korangi, Karachi 74900, Pakistan
autor
  • Shinshu University, Faculty of Textile Sciences, Interdisciplinary Cluster for Cutting Edge Research (ICCER), Institute of Fiber Engineering, Division of Frontier Fiber, Tokida 3151, Ueda, Nagano 3868567, Japan
Bibliografia
  • 1. Justham L, West A, Cork A. Quantifitcation and Characterization of Cricket Bowling Technique for the Development of the Parameters Required for a Novel Training System For Cricket. Proc Inst Mech Eng Part P J Sport Eng Technol [Internet]. 2008 Jun 11; 222(2): 61-76. Available from: http://journals.sagepub.com/doi/10.1243/17543371JSET25.
  • 2. Regulations ICC, The FOR, Of R, Reported B, Suspected W, Actions IB. Icc Regulations for the Review of Bowlers Reported With Suspected Illegal Bowling Actions. 2010; 1-18.
  • 3. Sanders L, McCaig S, Felton PJ, King MA. Passive Range of Motion of the Hips and Shoulders and their Relationship with Ball Spin Rate in Elite Finger Spin Bowlers. J Sci Med Sport [Internet]. 2019 Oct; 22(10): 1146-50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1440244018310661
  • 4. Ferdinands RED, Kersting UG. An Evaluation of Biomechanical Measures of Bowling Action Legality in Cricket. Sport Biomech [Internet]. 2007 Sep; 6(3): 315-33. Available from: http://www.tandfonline.com/doi/abs/10.1080/14763140701489884.
  • 5. Waqar S, Wang L, John S. Piezoelectric Energy Harvesting from Intelligent Textiles. In: Electronic Textiles [Internet]. Elsevier; 2015. p. 173-97. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081002018000102.
  • 6. Mitchell E, Coyle S, O’Connor NE, Diamond D, Ward T. Breathing Feedback System with Wearable Textile Sensors. In: 2010 International Conference on Body Sensor Networks [Internet]. IEEE; 2010. p. 56-61. Available from: http://ieeexplore.ieee.org/document/5504719/
  • 7. Huang C, Tang C, Shen C. A Wearable Textile for Monitoring Respiration, Using a Yarn-Based Sensor. In: 2006 10th IEEE International Symposium on Wearable Computers [Internet]. IEEE; 2006. p. 141-2. Available from: http://ieeexplore.ieee.org/document/4067749/.
  • 8. Li X, Zhang R, Yu W, Wang K, Wei J, Wu D, et al. Stretchable and Highly Sensitive Graphene-On-Polymer Strain Sensors. Sci Rep [Internet]. 2012 Dec 16; 2(1): 870. Available from: http://www.nature.com/articles/srep00870.
  • 9. Guo li, Berglin L, Wiklund U, Mattila H. Design of A Garment-Based Sensing System for Breathing Monitoring. Text Res J [Internet]. 2013 Mar 22; 83(5): 499-509. Available from: http://journals.sagepub.com/doi/10.1177/0040517512444336.
  • 10. Tangsirinaruenart O, Stylios G. A Novel Textile Stitch-Based Strain Sensor for Wearable End Users. Materials (Basel) [Internet]. 2019 May 7; 12(9): 1469. Available from: https://www.mdpi.com/1996-1944/12/9/1469.
  • 11. Greenspan B, Hall ML, Cao H, Lobo MA. Development and Testing of a Stitched Stretch Sensor with the Potential to Measure Human Movement. J Text Inst [Internet]. 2018 Nov 2; 109(11): 1493-500. Available from: https://www.tandfonline.com/doi/full/10.1080/00405000.2018.1432189.
  • 12. Seyedin S, Zhang P, Naebe M, Qin S, Chen J, Wang X, et al. Textile Strain Sensors: A Review of the Fabrication Technologies, Performance Evaluation and Applications. Mater Horizons [Internet]. 2019; 6(2): 219-49. Available from: http://xlink.rsc.org/?DOI=C8MH01062E.
  • 13. Fan Q, Zhang X, Qin Z. Preparation of Polyaniline/Polyurethane Fibers and Their Piezoresistive Property. J Macromol Sci Part B [Internet]. 2012 Apr 5; 51(4): 736-46. Available from: https://doi.org/10.1080/00222348.2011.609795.
  • 14. Eom J, Jaisutti R, Lee H, Lee W, Heo J-S, Lee J-Y, et al. Highly Sensitive Textile Strain Sensors and Wireless User-Interface Devices Using All-Polymeric Conducting Fibers. ACS Appl Mater Interfaces [Internet]. 2017 Mar 22; 9(11): 10190-7. Available from: https://doi.org/10.1021/acsami.7b01771.
  • 15. Wu X, Han Y, Zhang X, Lu C. Highly Sensitive, Stretchable, and Wash-Durable Strain Sensor Based on Ultrathin Conductive Layer@Polyurethane Yarn for Tiny Motion Monitoring. ACS Appl Mater Interfaces 2016; Apr; 8(15): 9936-45.
  • 16. Chen S, Lou Z, Chen D, Jiang K, Shen G. Polymer-Enhanced Highly Stretchable Conductive Fiber Strain Sensor Used for Electronic Data Gloves. Adv Mater Technol. 2016 Oct; 1(7): 1600136.
  • 17. Wang Z, Huang Y, Sun J, Huang Y, Hu H, Jiang R, et al. Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection. ACS Appl Mater Interfaces. 2016 Sep; 8(37): 24837-43.
  • 18. Atalay O, Kennon W. Knitted Strain Sensors: Impact of Design Parameters on Sensing Properties. Sensors [Internet]. 2014 Mar 7; 14(3): 4712-30. Available from: http://www.mdpi.com/1424-8220/14/3/4712/.
  • 19. Scilingo EP, Lorussi F, Mazzoldi A, De Rossi D. Strain-Sensing Fabrics For Wearable Kinaesthetic-Like Systems. IEEE Sens J [Internet]. 2003 Aug; 3(4): 460-7. Available from: http://ieeexplore.ieee.org/document/1226639/.
  • 20. Xue P, Tao XM, Kwok KW y, Leung MY, Yu TX. Electromechanical Behavior of Fibers Coated with an Electrically Conductive Polymer. Text Res J [Internet]. 2004 Oct 2; 74(10): 929-36. Available from: http://journals.sagepub.com/doi/10.1177/004051750407401013.
  • 21. Wang J, Soltanian S, Servati P, Ko F, Weng M. A Knitted Wearable Flexible Sensor for Monitoring Breathing Condition. J Eng Fiber Fabr. 2020; 15.
  • 22. Wang J, Zhong B, Wang H. Measuring Garment Pressure at Any Point Using a Wearable Sensor. J Eng Fiber Fabr. 2019 Jan; 14: 155892501987929.
  • 23. Gurarslan A, Özdemir B, Bayat İH, Yelten MB, Karabulut Kurt G. Silver Nanowire Coated Knitted Wool Fabrics for Wearable Electronic Applications. J Eng Fiber Fabr. 2019 Jan; 14: 155892501985622.
  • 24. Guo L, Berglin L, Mattila H. Improvement of Electro-Mechanical Properties of Strain Sensors Made of Elastic-Conductive Hybrid Yarns. Text Res J [Internet]. 2012 Nov 11; 82(19): 1937-47. Available from: http://journals.sagepub.com/doi/10.1177/0040517512452931.
  • 25. Guo L, Peterson J, Qureshi W, Kalantar Mehrjerdi A, Skrifvars M, Berglin L. Knitted Wearable Stretch Sensor for Breathing Monitoring Application. In: Ambience’11, Borås, Sweden, 2011. 2011.
  • 26. Liwen Li, Kun Yang, Guangli Song, Liang Zhang, Ming Liu. Development of knitted fabric sensors for monitoring human respiration. In: 2009 9th International Conference on Electronic Measurement & Instruments [Internet]. IEEE; 2009. p. 2-994-2-996. Available from: http://ieeexplore.ieee.org/document/5274396/.
  • 27. Shyr T-W, Shie J-W, Jhuang Y-E. The Effect of Tensile Hysteresis and Contact Resistance on the Performance of Strain-Resistant Elastic-Conductive Webbing. Sensors [Internet]. 2011 Jan 28; 11(2): 1693-705. Available from: http://www.mdpi.com/1424-8220/11/2/1693.
  • 28. Yang J-H, Cho H-S, Kwak H, Chae J-W, Lee H-J, Lee J-W, et al. Sensing Efficiency of Three-Dimensional Textile Sensors with an Open-and-Close Structure for Respiration Rate Detection. Text Res J [Internet]. 2020 Mar 30;004051752091584. Available from: http://journals.sagepub.com/doi/10.1177/0040517520915846.
  • 29. Mukhopadhyay B, Sharma O, Kar S. IoT Based Wearable Knitted Fabric Respiratory Monitoring System. In: 2018 IEEE SENSORS [Internet]. IEEE; 2018. p. 1-4. Available from: https://ieeexplore.ieee.org/document/8589540/
  • 30. Porciuncula F, Roto AV, Kumar D, Davis I, Roy S, Walsh CJ, et al. Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances. PM&R [Internet]. 2018 Sep; 10(9): S220-32. Available from: http://doi.wiley.com/10.1016/j.pmrj.2018.06.013.
  • 31. Cheng Y, Wang R, Sun J, Gao L. A Stretchable and Highly Sensitive Graphene-Based Fiber for Sensing Tensile Strain, Bending, and Torsion. Adv Mater. 2015 Dec; 27(45): 7365-71.
  • 32. Zhang M, Wang C, Wang Q, Jian M, Zhang Y. Sheath – Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors. ACS Appl Mater Interfaces [Internet]. 2016 Aug 17; 8(32): 20894-9. Available from: https://doi.org/10.1021/acsami.6b06984.
  • 33. Ryu S, Lee P, Chou JB, Xu R, Zhao R, Hart AJ, et al. Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion. ACS Nano. 2015 Jun; 9(6): 5929-36.
  • 34. Mattmann C, Clemens F, Tröster G. Sensor for Measuring Strain in Textile. Sensors [Internet]. 2008 Jun 3; 8(6): 3719-32. Available from: http://www.mdpi.com/1424-8220/8/6/3719.
  • 35. Huang C-T, Shen C-L, Tang C-F, Chang S-H. A Wearable Yarn-Based Piezo-Resistive Sensor. Sensors Actuators A Phys [Internet]. 2008 Feb; 141(2): 396-403. Available from: http://www.sciencedirect.com/science/article/pii/S0924424707007455.
  • 36. Wang Y, Wang L, Yang T, Li X, Zang X, Zhu M, et al. Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring. Adv Funct Mater. 2014; Aug; 24(29): 4666-70.
  • 37. Wang C, Xia K, Jian M, Wang H, Zhang M, Zhang Y. Carbonized Silk Georgette as an Ultrasensitive Wearable Strain Sensor for Full-Range Human Activity Monitoring. J Mater Chem C. 2017; 5(30): 7604-11.
  • 38. Atalay O, Kennon W, Husain M. Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties. Sensors [Internet]. 2013 Aug 21; 13(8): 11114-27. Available from: http://www.mdpi.com/1424-8220/13/8/11114.
  • 39. Atalay O, Kennon WR, Demirok E. Weft-Knitted Strain Sensor for Monitoring Respiratory Rate and Its Electro-Mechanical Modeling. IEEE Sens J [Internet]. 2015 Jan; 15(1): 110-22. Available from: http://ieeexplore.ieee.org/document/6857365/.
  • 40. Dinparast Tohidi S, Zille A, Catarino AP, Rocha AM. Effects of Base Fabric Parameters on the Electro-Mechanical Behavior of Piezoresistive Knitted Sensors. IEEE Sens J. 2018 Jun; 18(11): 4529-35.
  • 41. Shyr T-W, Shie J-W, Jiang C-H, Li J-J. A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements. Sensors [Internet]. 2014 Feb 26;14(3):4050-9. Available from: http://www.mdpi.com/1424-8220/14/3/4050.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68f8b3b3-b273-4186-b693-7efbe1b5680d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.