PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new strongly predefined time sliding mode controller for a class of cascade high-order nonlinear systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many real-time systems can be described as cascade space-state models of different orders. In this paper, a new predefined controller is designed using a Strongly Predefined Time Sliding Mode Control (SPSMC) scheme for a cascade high-order nonlinear system. The proposed control scheme based-on SMC methodology is designed such that the system states reach zero within a determined time prior to performing numerical simulation. Moreover, Fixed Time Sliding Mode Control (FSMC) and Terminal Sliding Mode Control (TSMC) schemes are presented and simulated to provide a comparison with the proposed predefined time scheme. The numerical simulation is performed in Simulink/MATLAB for the proposed SPSMC and the other two existing methods on two examples: second and of third order to demonstrate the effectiveness of the proposed SPSMC method. The trajectory tracking of the ship course system is addressed a san example of a second-order system. Synchronization of two chaotic systems, Genesio Tesi and Coullet, is considered as an example of a third-order system. Also, by using two performance criteria, a thorough comparison is made between the proposed predefined time scheme, SPSMC, and the two no predefined time schemes, FSMC and TSMC.
Rocznik
Strony
599--620
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr., wzory
Twórcy
  • Department of Electrical Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
  • ower Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, University of Malaya, Faculty of Engineering, Kuala Lumpur, 50603, Malaysia
  • Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, University of Malaya, Faculty of Engineering, Kuala Lumpur, 50603, Malaysia
  • School of Software and Electrical Engineering, Swinburne, Victoria, Australia
  • Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
  • Institute of Automatic Control and Robotics, Faculty of Mechatronics, Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • [1] A. S. S. Abadi and P. A. Hosseinabadi: Fuzzy adaptive finite time control ship fin stabilizing systems model of fuzzy Takagi-Sugeno with unknowns and disturbances, In 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), (2018), 33–36.
  • [2] A. S. S. Abadi, M. H. Mehrizi, and P. A. Hosseinabadi: Fuzzy adaptive terminal sliding mode control of SIMO nonlinear systems with TS fuzzy model, In 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), (2018), 185–189.
  • [3] A. S. S. Abadi, P. A. Hosseinabadi, and S. Mekhilef: Fuzzy adaptive fixed-time sliding mode control with state observer for a class of high-order mismatched uncertain systems, International Journal of Control Automation and Systems, 18(X) (2020), 1–17.
  • [4] Y. Yueneng and Y. Ye: Backstepping sliding mode control for uncertain strict-feedback nonlinear systems using neural-network-based adaptive gain scheduling, Journal of Systems Engineering and Electronics, 29(3), (2018), 580–586.
  • [5] S. Oucheriah and L. Guo: PWM-based adaptive sliding-mode control for boost DC–DC converters, IEEE Transactions on Industrial Electronics, 60(8), (2012), 3291–3294.
  • [6] A. S. S. Abadi, P. A. Hosseinabadi, and S. Mekhilef: Two novel approaches of NTSMC and ANTSMC synchronization for smart grid chaotic systems, Technology and Economics of Smart Grids and Sustainable Energy, 3(1), (2018), article number 14.
  • [7] P. A. Hosseinabadi and A. S. S. Abadi: Adaptive terminal sliding mode control of high-order nonlinear systems, International Journal of Automation and Control, 13(6) (2019), 668–678.
  • [8] A. S. S. Abadi, P. A. Hosseinabadi, and S. Mekhilef: Two novel AOTSMC of photovoltaic system using VSC model in smart grid, In Smart Grid Conference (SGC), (2017), 1–6.
  • [9] X. Liu, X. Su, P. Shi, and C. Shen: Observer-based sliding mode control for uncertain fuzzy systems via event-triggered strategy, IEEE Transactionson Fuzzy Systems, 27(11), (2019), 2190–2201.
  • [10] P. A. Hosseinabadi, A. S. S. Abadi, and S. Mekhilef: Adaptive terminal sliding mode control of hyper-chaotic uncertain 4-order system with one control input, In IEEE Conference on Systems, Process and Control (ICSPC) (2018), 94–99.
  • [11] T. D. Thien, D. X. Ba, and K. K. Ahn: Adaptive backstepping sliding mode control for equilibrium position tracking of an electrohydraulic elastic manipulator,IEEE Transactions on Industrial Electronics, 67(5), (2019), 3860–3869.
  • [12] S. P. Bhat and D. S. Bernstein: Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Transactions on Automatic Control, 43(5) (1998), 678–682.
  • [13] P. A. Hosseinabadi:Finite time control of remotely operated vehicle, Master Thesis, University of Malaya, 2018.
  • [14] C. Hua, Y. Li, and X. Guan: Finite/fixed-time stabilization for nonlinear interconnected systems with dead-zone input, IEEE Transactions on Automatic Control, 62(5) (2016), 2554–2560.
  • [15] H. M. Becerra, C. R. Vázquez, G. Arechavaleta, and J. Delfin: Predefined-time convergence control for high-order integrator systems using time base generators, IEEE Transactions on Control Systems Technology, 26(5) (2017), 1866–1873.
  • [16] E. Jiménez-Rodríguez, J. D. Sánchez-Torres, D. Gómez-Gutiérrez, and A. G. Loukinanov: Variable structure predefined-time stabilization of second-order systems, Asian Journal of Control, 21(3) (2019), 1179–1188.
  • [17] E. Jiménez-Rodríguez, J. D. Sánchez-Torres, and A. G. Loukianov: On optimal predefined-time stabilization, International Journal of Robust and Nonlinear Control, 27(7) (2017), 3620–3642.
  • [18] J. D. Sánchez-Torres, E. Jiménez-Rodríguez, D. Gómez-Guitiérrez, and A. Loukianov: Non-singular predefined-time stable manifolds, XVII Latin American Conference of Automatic Control, Medellín, Colombia, 2016.
  • [19] E. Jiménez-Rodríguez, J. D. Sánchez-Torres, and A. G. Loukianov: Predefined-time backstepping control for tracking a class of mechanical systems, IFAC – Papers OnLine, 50(1) (2017), 1680–1685.
  • [20] J. D. Sánchez-Torres, D. Gómez-Gutiérrez, E. López, and A. G. Loukianov: A class of predefined-time stable dynamical systems, IMA Journal of Mathematical Control and Information, 35 Supplement_1 (2017), 1–29.
  • [21] J. D. Sánchez-Torres, E. N. Sanchez, and A. G. Loukianov: Predefined-time stability of dynamical systems with sliding modes, In American Control Conference (ACC), (2015), 5842-5846.
  • [22] M. Kchaou: Robust observer-based sliding mode control for nonlinear uncertain singular systems with time-varying delay and input non-linearity, European Journal of Control, 49(2019), 15–25.
  • [23] A. Chalanga and F. Plestan: Third order sliding mode control with apredefined convergence time: application to an electropneumatic actuator. In IEEE Conference on Control Technology and Applications (CCTA) (2017), 892–897.
  • [24] P. A. Hosseinabadi, A. S. S. Abadi, S. Mekhilef, and H. R. Pota: Chattering-free trajectory tracking robust predefined-time sliding mode control for a remotely operated vehicle, Journal of Control, Automation and Electrical Systems, May (2020), 1–19.
  • [25] X. Sun and W. Chen: Global generalised exponential/finite-time control for course-keeping of ship, International Journal of Control, 89(6) (2016),1169–1179.
  • [26] E. Ranjbar, M. Yaghoubi, and A. A. Suratgar: Adaptive sliding mode controller design for a tunable capacitor susceptible to unknown upperbounded uncertainties and disturbance, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44(2019), 327–346.
  • [27] A. Modirrousta and M. Khodabandeh: A novel nonlinear hybrid controller design for an uncertain quadrotor with disturbances, Aerospace Science and Technology, 45(2015), 294–308.
  • [28] S. P. Bhat and D. S. Bernstein: Finite-time stability of continuous autonomous system, SIAM Journal on Control and Optimization, 38(3) (2000), 751–766.
  • [29] A. Polyakov: Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Transactions on Automatic Control, 57(8) (2011), 2106–2110.
  • [30] J. D. Sánchez-Torres, E. N. Sanchez, and A. G. Loukianov: A discontinuous recurrent neural network with predefined time convergence for solution of linear programming, In IEEE Symposium on Swarm Intelligence (2014), 1–5.
  • [31] H. Liu, T. Zhang, and X. Tian: Continuous output-feedback finite-time control for a class of second-order nonlinear systems with disturbance, International Journal of Robust and Nonlinear Control, 26(2) (2016), 218–234.
  • [32] Z. Zuo: Non-singular fixed-time terminal sliding mode control of non-linear systems, IET Control Theory & Applications, 9(4) (2014), 545–552.
  • [33] Z. Zuo and L. Tie: Distributed robust finite-time nonlinear consensus protocols for multi-agent systems, International Journal of Systems Science, 47(6) (2016), 1366–1375.
  • [34] N. Wang, S. Lv, and Z. Liu: Global finite-time heading control of surface vehicles, Neurocomputing, 175 (2016), 662–666.
  • [35] J.-B. Hu, Y. Han, and L.-D. Zhao: Synchronization in the Genesio Tesi and Coullet systems using the backstepping approach, Journal of Physics: Conference Series, 96(1) (2008), IOP Publishing, 012150.
  • [36] R. Genesio and A. Tesi: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems, Automatica, 28(3) (1992), 531–548.
  • [37] Y.-J. Huang, T.-C. Kuo, and S.-H. Chang: Adaptive sliding-mode control for nonlinear systems with uncertain parameters, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(2) (2008), 534–539.
  • [38] C. U. Solis, J. B. Clempner, and A. S. Poznyak: Fast terminal sliding-mode control with an integral filter applied to a Van Der Pol oscillator, IEEE Transactions on Industrial Electronics, 64(7) (2017), 5622-5628.
  • [39] H. Liu and T. Zhang: Adaptive neural network finite-time control for uncertain robotic manipulators, Journal of Intelligent & Robotic Systems, 75(3–4) (2014), 363–377.
  • [40] S. Yi and J. Zhai: Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators, ISA Transactions, 90 (2019), 41–51.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68f7c66c-4599-478c-97d9-2183e3664a44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.