Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Precise and efficient localization of sound sources is essential in many applications. Traditionally, methods that use beamforming tend to scan the entire space with fixed level of precision. Although effective, this approach is inefficient when searching for a single source. In this paper we propose an iterative algorithm for localizing a single sound source utilizing signals from a 4th order ambisonic microphone array. Two beamformers were implemented: one based on signals in A-format, incorporating delay-and-sum method, commonly used for sound source localization, and the second one based on B-format, operating in the spherical harmonic domain. By utilizing an iterative algorithm, we have significantly decreased the number of points to be evaluated to localize the sound source. For the delay-and-sum beamformer, the best outcome was obtained by using all 32 channels in every iteration. For the spherical-harmonics-based beamformer, the best strategy was to use first-order harmonics in the initial iteration and fourth-order harmonics in subsequent iterations.
Czasopismo
Rocznik
Tom
Strony
art. no. 2023216
Opis fizyczny
Bibliogr. 20 poz., 1 rys., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- 1. S.R. Anderson, R. Jocewicz, A. Kan, J. Zhu, S. Tzeng, R.Y. Litovsky; Sound source localization patterns and bilateral cochlear implants: Age at onset of deafness effects; PLOS ONE, 2022, 17(2), e0263516; DOI: https://doi.org/10.1371/journal.pone.0263516
- 2. F. Asano, M. Goto, K. Itou, H. Asoh; Real-time sound source localization and separation system and its application to automatic speech recognition; In: 7th European Conference on Speech Communication and Technology (Eurospeech 2001), 2001; DOI: https://doi.org/10.21437/eurospeech.2001-291
- 3. J. Stachurski, L. Netsch, R. Cole; Sound source localization for video surveillance camera; 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2013; DOI: https://doi.org/10.1109/avss.2013.6636622
- 4. C. Rascon, I. Meza; Localization of sound sources in robotics: A review; Robotics and Autonomous Systems, 2017, 96, 184-210; DOI: https://doi.org/10.1016/j.robot.2017.07.011
- 5. T.A. Rhinehart, L.M. Chronister, T. Devlin, J. Kitzes; Acoustic localization of terrestrial wildlife: Current practices and future opportunities; Ecology and Evolution, 2020, 10(13), 6794-6818; DOI: https://doi.org/10.1002/ece3.6216
- 6. M.V.S. Lima, W.A. Martins, L.O. Nunes, L.W.P. Biscainho, T.N. Ferreira, M.V.M. Costa, B. Lee; Efficient steered-response power methods for sound source localization using microphone arrays; arXiv:1407.2351 (preprint), 2014
- 7. R. Schmidt; Multiple emitter location and signal parameter estimation; IEEE transactions on antennas and propagation, 1986, 34(3), 276-280
- 8. J. Meyer, G. Elko; A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield; In: 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002, 2, II-1781-II-1784
- 9. H. Sun, S. Yan, U.P. Svensson; Space domain optimal beamforming for spherical microphone arrays; In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, 117-120
- 10. B. Rafaely; Phase-mode versus delay-and-sum spherical microphone array processing; IEEE Signal Processing Letters, 2005, 12(10), 713-716
- 11. R. Hu, Q. Huang; Source localization using constrained Kalman beamforming in spherical harmonics domain; In: 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013), 2013, 1-4
- 12. S. Gombots, J. Nowak, M. Kaltenbacher; Sound source localization - state of the art and new inverse scheme; Elektrotechnik und Informationstechnik e & i, 2021, 138(3), 229-243
- 13. R. Duraiswami, D. Zotkin, L.S. Davis; Active speech source localization by a dual coarse-to-fine search; In: Proceedings of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, 5, 3309-3312
- 14. L.O. Nunes, W.A. Martins, M.V. Lima, L. W. Biscanho, M. V. Costa, F. M. Goncalves, A. Said, B. Lee; A steered-response power algorithm employing hierarchical search for acoustic source localization using microphone arrays; IEEE Transactions on Signal Processing, 2014, 62(19), 5171-5183
- 15. A. Marti, M. Cobos, J.J. Lopez, J. Escolano; A steered response power iterative method for high-accuracy acoustic source localization; J. Acoust. Soc. Am., 2013, 134(4), 2627-2630
- 16. EigenStudio® User Manual; 2019
- 17. B. Rafaely; Analysis and Design of Spherical Microphone Arrays; IEEE Transactions on Speech and Audio Processing, 2005, 13(1), 135-143
- 18. B. Rafaely, Y. Peled, M. Agmon, D. Khaykin, E. Fisher; Spherical Microphone Array Beamforming; In: Speech Processing in Modern Communication: Challenges and Perspectives; I. Cohen, J. Benesty, S. Gannot, Springer Berlin Heidelberg, 2010, 281-305
- 19. S. Moreau, J. Daniel, S. Bertet; 3D sound field recording with higher order ambisonics - objective measurements and validation of spherical microphone; In: Proceedings of the 120th Audio Engineering Society Convention, 2006
- 20. A. Politis; Microphone array processing for parametric spatial audio techniques; PhD Thesis; Aalto University, Helsinki, 2016
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68f76fe9-8be6-4a68-88a5-d778f072c36f