PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic modeling and identification of a reluctance synchronous machine parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article discusses an identification and modeling approach of a reluctance synchronous motor (RSM) based on the running rotor technique. The applied flux linkage approximation functions reflect the self-saturation and cross-saturation effects, and the applied mathematical model is continuous and differentiable. The proper design of the experiment is discussed, and relevant recommendations are made to ensure the mitigation of procedural mistakes in the experiments. A detailed analysis of the impact of configuration faults on the obtained experimental data is provided, considering distortions in the obtained flux linkage and inductance surfaces. Considering the achieved model accuracy, a novel model evaluation considering the achieved model accuracy technique based on transient current response is proposed.
Rocznik
Strony
art. no. e151042
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Institute of Engineering and Technology, Nicolaus Copernicus University in Torun, ul. Wilenska 7, 87-100 Torun, Poland
  • Institute of Control and Industrial Electronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
  • Institute of Engineering and Technology, Nicolaus Copernicus University in Torun, ul. Wilenska 7, 87-100 Torun, Poland
  • Institute of Control and Industrial Electronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] M. Murataliyev, M. Degano, M. Di Nardo, N. Bianchi, and C. Gerada, “Synchronous reluctance machines: A comprehensive review and technology comparison,” Proc. IEEE, vol. 110, no. 3, pp. 382–399, 2022.
  • [2] S.-W. Su, H. Börngen, C. Hackl, and R. Kennel, “Nonlinear current control of reluctance synchronous machines with analytical flux linkage prototype functions,” IEEE Open J. Ind. Electron. Soc., vol. 110, pp. 582–593, 2022.
  • [3] F. Oliveira and A. Ukil, “Comparative performance analysis of induction and synchronous reluctance motors in chiller systems for energy efficient buildings,” IEEE Trans. Ind. Inform., vol. 15, no. 8, pp. 4384–4393, 2019.
  • [4] J.-C. Li, M. Xin, Z.-N. Fan, and R. Liu, “Design and experimental evaluation of a 12 kw large synchronous reluctance motor and control system for elevator traction,” IEEE Access, vol. 8, pp. 34 256–34 264, 2020.
  • [5] G.V. Kumar, C.-H. Chuang, M.-Z. Lu, and C.-M. Liaw, “Development of an electric vehicle synchronous reluctance motor drive,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5012–5024, 2020.
  • [6] A. Danilevičius, M. Karpenko, and V. Křivánek, “Research on the noise pollution from different vehicle categories in the urban area,” Transport, vol. 38, no. 1, pp. 1–11, 2023.
  • [7] I. Boldea and L. Tutelea, Reluctance electric machines: design and control. CRC Press, 2018.
  • [8] E. Armando, R. Bojoi, I. Radu, P. Guglielmi, G. Pellegrino, and M. Pastorelli, “Experimental identification of the magnetic model of synchronous machines,” IEEE Trans. Ind. Appl., vol. 49, no. 5, pp. 2116–2125, 2013.
  • [9] L. Niewiara, T. Tarczewski, and L. Grzesiak, “Angular velocity control of reluctance synchronous motor with torque maximization and gain-scheduled current controllers,” in Proc. XVth Sci. Conf. SENE 2022, Lodz, Poland: Lodz University of Technology, 2022.
  • [10] S. Yamamoto, T. Ara, and K. Matsuse, “A method to calculate transient characteristics of synchronous reluctance motors considering iron loss and cross-magnetic saturation,” IEEE Trans. Ind. Appl., vol. 43, no. 1, pp. 47–56, Jan.-Feb. 2007.
  • [11] A. Credo, G. Fabri, M. Villani, and M. Popescu, “Adopting the topology optimization in the design of high-speed synchronous reluctance motors for electric vehicles,” IEEE Trans. Ind. Appl., vol. 56, no. 5, p. 5429–5438, 2020.
  • [12] J. Ahn, S.-B. Lim, K.-C. Kim, J. Lee, J. Choi, S. Kim, and J. Hong, “Field weakening control of synchronous reluctance motor for electric power steering,” Electr. Power Appl., IET, vol. 1, pp. 565–570, 2007.
  • [13] A. Accetta, M. Cirrincione, M. Pucci, and A. Sferlazza, “A space-vector state dynamic model of the synchronous reluctance motor including self and cross-saturation effects and its parameters estimation,” in 2018 IEEE Energy Convers. Congr. Expo., Portland, USA: IEEE, 2018, pp. 4466–4472.
  • [14] S. Wiedemann and C. M. Hackl, “Simultaneous identification of inverter and machine nonlinearities for self-commissioning of electrical synchronous machine drives,” IEEE Trans. Energy Convers., vol. 38, no. 3, pp. 1767–1780, 2023.
  • [15] S.W. Su, N. Monzen, R. Kennel, and C.M. Hackl, “Self-identification of reluctance synchronous machines with analytical flux linkage prototype functions,” in Proc. 11th Internat. Conf. Power Electron. and ECCE Asia (ICPE 2023 – ECCE Asia), IEEE, 2023, pp. 221–227.
  • [16] N. Monzen, B. Pfeifer, and C.M. Hackl, “A simple disturbance observer for stator flux linkage estimation of nonlinear synchronous machines,” in 32nd IEEE Int. Symp. Ind. Electron. (ISIE). IEEE, 2023, pp. 1–6.
  • [17] A. Accetta, M. Cirrincione, M. Pucci, and A. Sferlazza, “Space-vector state dynamic model of the synrm considering self, cross-saturation and iron losses and related identification technique,” IEEE Trans. Ind. Appl., vol. 59, no. 3, pp. 3320–3331, 2023.
  • [18] Ł.J. Niewiara, M. Gierczynski, T. Tarczewski, and L.M. Grzesiak, “Practical approach for identification and dynamic modeling of reluctance synchronous motors’ electrical circuit,” in Proc. XVIth Sci. Conf. SENE 2023, Lodz, Poland: Lodz University of Technology, 2023.
  • [19] A. Accetta, M. Cirrincione, M. Pucci, and A. Sferlazza, “A saturation model of the synchronous reluctance motor and its identification by genetic algorithms,” in 2018 IEEE Energy Convers. Congr. Expo., Portland, USA: IEEE, 2018, pp. 4460–4465.
  • [20] Ł.J. Niewiara, T. Tarczewski, and L.M. Grzesiak, “Application of extended Kalman filter for estimation of periodic disturbance and velocity ripple reduction in pmsm drive,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, p. 983–995, 2020.
  • [21] R. Thike and P. Pillay, “Automated current control method for flux-linkage measurement of synchronous reluctance machines,” IEEE Trans. Ind. Appl., vol. 56, no. 2, pp. 1464–1474, 2020.
  • [22] R. Thike and P. Pillay, “Automatic inductance measurements of synchronous reluctance machines including cross-saturation using real-time systems,” in 2018 IEEE Energy Convers. Congr. Expo., Portland, USA: IEEE, 2018, pp. 6121–6127.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68f1cd5d-c073-4190-9775-09beaddc2ae9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.