PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics of the Evolution of Carbide Morphology in the Haynes® 230® Alloy as a Result of High Temperature Annealing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, results of an investigation of the microstructure evolution in Haynes® 230® alloy are presented. The morphological and chemical compositions of the chosen microstructure’s constituents, such as the primary and secondary carbides, were analyzed based on tests in the temperature range 700–800 ◦C for 1000–3000 h. The prediction of phase evolution within the microstructure was proposed based on the analysis of mutual replacement of carbide-forming elements at the carbide/matrix interface. Based on the results, some complementary markers were considered to describe Haynes® 230® microstructure evolution. Qualitative markers, i.e., defined morphological features, were related to the shape and distribution of microstructure constituents. The study also used quantitative markers related to the local chemical compositions of carbide particles, determined as the ratio of the concentrations of carbide-forming elements Crc/Wc, Crc/CrM and Wc/WM. Microstructure maps created on the basis of these complementary markers for the successive annealing stages reflected the course of its morphological evolution.
Słowa kluczowe
Rocznik
Strony
109--119
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
  • Łukasiewicz Research Network - Krakow Institute of Technology, Zakopiańska 73 Str., 30-418 Kraków, Poland
  • Łukasiewicz Research Network - Krakow Institute of Technology, Zakopiańska 73 Str., 30-418 Kraków, Poland
  • Łukasiewicz Research Network - Krakow Institute of Technology, Zakopiańska 73 Str., 30-418 Kraków, Poland
Bibliografia
  • Azimi, S. M., M. Britz, M. Engstler, M. Fritz, and F. Mücklich. 2018. Advanced Steel Microstructural Classification by Deep Learning Methods. Scientific Reports 8: 2128.
  • Belan, J. 2016. GCP and TCP phases presented in nickel based superalloys. Material Today Proceedings 2: 936–41.
  • Chun, S., S. Roy, Y. T. Nguyen, J. B. Choi, H. S. Udaykumar, and S. S. Baek. 2020. Deep learning for synthetic microstructure generation in a materials by design framework for heterogeneous energetic materials. Scientific Reports 10: 13307.
  • DeCost, B., and E. Holm. 2015. A computer vision approach for automated analysis and classification of microstructural image data. Computational Materials Science 110: 126–33.
  • Dong, X., W. Zhang, Z. Xu, H. Huang, X. Ye, B. Leng, L. Yan, Z. Li, and X. Zhou. 2012. Microstructure of carbides at grain boundaries in Nickel based super alloys. Journal of Materials Science & Technology 11: 1031–8.
  • Dudziak, T., V. Deodeshmukh, L. Backert, J. Sobczak, M. Witkowska, W. Ratuszek, K. Chruściel, A. Zieliński, N. Sobczak, and G. Bruzda. 2017a. Phase Investigations under Steam Oxidation Process at 800 ◦C for 1000 h of Advanced Steels and Ni-Based Alloys. Oxidation of Metals 87: 139–58.
  • Dudziak, T., Ł. Boroń, V. Deodeshmukh, J. Sobczak, N. Sobczak, M. Witkowska, W. Ratuszek, and K. Chruściel. 2017b. Steam oxidation behaviour of advanced steels and Ni based alloys at 800 ◦C. Journal of Materials Engineering and Performance 26: 1044–56.
  • Dudziak, T., P. Gajewski, B. Śnieżyński, V. Deodeshmukh, M. Witkowska, W. Ratuszek, and K. Chruściel. 2018. Neural Network Modelling Studies of Steam Oxidised Kinetic Behaviour of Advanced Steels and Ni-based alloys at 800 ◦C for 3000 hours. Corrosion Science 133: 94–111.
  • Fan, Y., W. Huang, X. Yang, D. Shi, and S. Lia. 2019. Mechanical properties deterioration and its relationship with microstructural variation using small coupons sampled from serviced turbine blades. Materials Science & Engineering A 757: 134–45.
  • High Temperature Alloys. Haynes 230 Alloy. Tensile Properties. Available online: https://www.haynesintl.com/ alloys/alloy-portfolio_/High-temperature-Alloys/HAYNES-230-ALLOY.aspx (accessed on 5 April 2021).
  • Kim, I. S., B. G. Choi, H. U. Hong, J. Do, and C. Y. Jo. 2014. Influence of thermal exposure on the microstructural evolution and mechanical properties of a wrought Ni-base superalloy. Materials Science and Engineering: A 593: 55–63.
  • Komenda, J. 2001. Automatic recognition of complex microstructures using the Image Classifier. Materials Characterization 46: 87–92.
  • Lvov, G., V. I. Levit, and M. J. Kaufman. 2004. Mechanism of Primary MC Carbide Decomposition in Ni-Base Superalloys. Metallurgical and Materials Transaction A 35A: 1669–79.
  • Ma, W., E. J. Kautz, A. Baskaran, A. Chowdhury, V. Joshi, B. Yener, and D. J. Lewis. 2020. Image-driven discriminative and generative machine learning algorithms for establishing microstructure–processing relationships. Journal of Applied Physics 128: 134901.
  • Romanowska-Pawliczek, A., A. Siwek, M. Głowacki, and M. Warmuzek. 2011. Image recognition, identification and classification algorithms in cast alloys microstructure analysis. In Proceedings of the IMETI 2011: 4th International Multi-Conference On Engineering and Technological Innovation, Orlando, FL, USA, July 19–22. Edited by N. Callaos, J. V. Carrasquero, H.-W. Chu, J. Ferrer, M. J. Savoie and A. Tremente. Vol. II, pp. 56–61.
  • Seiser, B., R. Drautz, and D. G. Pettifor. 2011. TCP phase predictions in Ni-based superalloys: Structure maps revisited. Acta Materialia 59: 749–63.
  • Sun, W., X. Qin, J. Guo, L. Lou, and L. Zho. 2016. Degeneration Process and Mechanism of Primary MC Carbides in a Cast Ni-Based Superalloy. Acta Metallurgica Sinica 52: 455–62.
  • Wang, T. 2004. Database development and microstructure modeling in Ni-base superalloys. Acta Materialia 52: 2837–45.
  • Wu, Q., H. Song, R. W. Swindeman, J. P. Shingledecker, and V. K. Vasudevan. 2008. Microstructure of long-term aged IN617 Ni-base superalloy. Metallurgical and Materials Transactions A 39: 2569–85.
  • Yang, Y., R. C. Thomson, R. M. Leese, and S. Roberts. 2013. Microstructural evolution in cast Haynes 282 for application in advanced power plants. In Advances in Materials Technology for Fossil Power Plants, Proceedings of the Seventh International Conference, Waikoloa, HI, USA, October 22–25. Edited by D. Gandy and J. Shingledecker. Waikoloa: ASM International.
  • Yin, F. S., Q. Zheng, and X. F. Sun. 2007. Effect of melt treatment on carbides formation in a cast nickel based superalloy M963. Journal of Materials Processing Technology 183: 440–44.
  • Zheng, Y., S. Li, L. Zheng, and Y. Han. 2004. Abnormal Phases in High Content Nickel Based Superalloys and Phase Control. Edited by K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra and S. Walston. TMS (The Minerals, Metals & Materials Society).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68f16d86-206b-445a-a1a0-670e19ab5d0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.