PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of cotton stalk, maize stalk and almond bark on some soil microbial activities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the increase of agricultural production, residues of crop are the main source of organic matter in the soil and they are alternatives to inorganic fertilizers. For this purpose, effects of organic residues (cotton stalk, maize stalk, almond bark) commonly grown in Turkey were investigated for some soil microbial activity in clay soil. In this study, incubation experiment was set up. Five doses (0%, 2%, 4%, 6% and 8%) of organic residues (maize stalks, cotton stalks or almond bark) were applied to soil. Soil microbiological properties of soil samples such as CO2 respiration, dehydrogenase and urease activity were determined. According to the results obtained, maize stalk, cotton stalks and almond bark applications increased some soil microbiological activities, such as CO2 respiration, dehydrogenase and urease activities according to control soil. Maize stalk in comparison to other residues affects better on the biological properties of the soil. It is determined that enhancing effects of the added organic residues (maize stalk, cotton stalk, almond bark) into the soil were changed according to the type of organic residues, dosage and application terms.
Słowa kluczowe
Rocznik
Strony
91--96
Opis fizyczny
Bibliogr. 32 poz., tab., wykr.
Twórcy
autor
  • Harran University, Turkey, Science and Art Faculty, Department of Biology, Şanlıurfa
  • Harran University, Turkey, Science and Art Faculty, Department of Biology, Şanlıurfa
Bibliografia
  • [1]. Anderson, J.P.E. & Domsch, K.H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils, Soil Biology and Biochemistry, 10, pp. 215-221.
  • [2]. Anderson, J.P.E. (1982). Soil respiration. In: methods of soil analysis, part 2, chemical and microbiological properties (Ed. AL. Page), ASA-SSSA, Madison, Winsconsin, pp. 831-871.
  • [3]. Bastida, F., Kandeler, E., Moreno, J.L., Ros, M., Garcia, C. & Hernandez, T. (2008). Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate, Applied Soil Ecology, 40, pp. 318-329.
  • [4]. Bastian, F., Bouziri, L., Nicolardot, B. & Lionel, R. (2009). Impact of wheat straw decomposition on successional patterns of soil microbial community structure, Soil Biology and Biochemistry, 41, pp. 262-275.
  • [5]. Benitez, E., Melgar, R. & Nogales, R. (2004). Estimating soil resilience to a toxic organic waste by measuring enzyme activities, Soil Biology and Biochemistry, 36, pp. 1615-1623.
  • [6]. Chang, E., Chung, R. & Tsai, Y. (2007). Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population, Soil Science and Plant Nutrition, 53, pp. 132-140.
  • [7]. Ferreras, L., Gomez, G., Toresani, S., Firpo, I. & Rotondo, R. (2007). Effect of organic amendments on some physical, chemical and biological properties in a horticultural soil, Bioresource Technology, 97, pp. 635-640.
  • [8]. Franco-Otero, V.G., Soler-Rovira, P., Hernández, D., López-Desá, E.G. & Plaza, G. (2012). Short-term effects of organic municipal wastes on wheat yield, microbial biomass, microbial activity and chemical properties of soil, Biology Fertility of Soils, 48, pp. 205-216.
  • [9]. Gouaerts, B., Mezzalama, M., Unno, Y., Sayre, K.D., Luna-Guido, M., Vanherck, K., Dendoouen, L. & Deckers, J. (2007). Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity, Applied Soil Ecology, 37, pp. 18-30.
  • [10]. Hoffmann, G.G. & Teicher, K. (1961). A colorimetric method for the determination of urease activity in soils, Zeitschrift für Pflanzenernahrung und Bodenkunde (Journal of Plant Nutrition and soil Science), Bodenk, 91, pp. 55-63.
  • [11]. Hueso, S., Garcia, C. & Hernandez, T. (2012). Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils, Soil Biology and Biochemistry, 50, pp. 167-173.
  • [12]. Kacar, B. & Katkat, V. (2007). Plant nutrition, Nobel Publish. ISBN: 978-975-591-834-1. pp. 559.
  • [13]. Liang, Y., Si, J., Nikolic, M., Peng, Y., Chen, W. & Jiang, Y. (2005). Organic anure Stimulates Biological Activity and Barley Growth in Soil Subject to Secondary Salinization, Soil Biology and Biochemistry, 37, pp. 1185-1195.
  • [14]. Markowicz, A., Płaza, G. & Piotrowska-Seget, Z. (2016). Activity and functional diversity of microbial communities in long-term hydrocarbon and heavy metal contaminated soils, Archives of Environmental Protection, 42, pp. 3-11.
  • [15]. Mattana, S., Ortiz, O. & Alcaniz, J.M. (2010). Substrate-induced respiration of a sandy soil treated with different types of organic waste, Communications in Soil Science and Plant Analysis, 41, pp. 408-423.
  • [16]. Nicolardot, B., Bouziri, L., Bastian, F. & Ranjard, L. (2007). A microcosm experiment to evaluate the influence of location and quality of plant residues on residue decomposition and genetic structure of soil microbial communities, Soil Biology and Biochemistry, 39, pp. 1631-1644.
  • [17]. Okur, N., Kayıkçıoğlu, H.H., Okur, B. & Delibacak, S. (2008). Organic amendment based on tobacco waste compost and farmyard manure: Influence on soil biological properties and butter-head lettuce (Lactuca sativa L. var. capitata L.) yield, Turkish Journal of Agriculture and Forestry, 32(2), pp. 91-99.
  • [18]. Ozores-Hampton, M., Stansly, P.A. & Salame, T.P. (2011). Soil chemical, physical, and biological properties of a sandy soil subjected to long-term organic amendments, Journal of Sustainable Agriculture, 35(3), pp. 243-259.
  • [19]. Özcan, S. 2009. Corn, Indispensable Crop of the Modern World: Contribution of genetically modified (Transgenic) corn on agricultural production, Türk Bilimsel Derlemeler Dergisi, 2, pp. 01-34
  • [20]. Pepper, I.L., Gerba, C.P. & Brendecke, J.W. (1995). Brendecke: Environmental Microbiology, A Laboratory Manual. Academic Press, New York 1995.
  • [21]. Poulsen, H.P.B., Magid, J., Luxhoi, J. & De Neergaard, A. (2013). Effects of fertilization with urban and agricultural organic wastes in a field trial-waste imprint on soil microbial activity, Soil Biology and Biochemistry, 57, pp. 794-802.
  • [22]. Pratt, R.G. (2008). Fungal population levels in soils of commercial swine waste disposal sites and relationship to soil nutrient concentrations, Applied Soil Ecology, 38, pp. 223-229.
  • [23]. Sawicka, A., Czekala, J. & Wolna, A. (2004). Dynamics of the development of microorganisms in soils fertilised with sewage sludge and tobacco dust, Proceedings of the 10 th International Conference of the RAMIRAN Network. Slovak Republic, May 14-18 2002, pp. 201.
  • [24]. Szwed, A. & Bohacz, J. (2014). Enzymatic activity and certain chemical properties of grey-brown podzolic soil (Haplic luvisol) amended with compost of tobacco wastes, Archives of Environmental Protection, 40, pp. 61-73.
  • [25]. Stark, C., Condron, L.M., Stewart, A., Di, H.J. & O’Callaghan, M. (2007). Influence of organic and mineral amendments on microbial soil properties and processes, Applied Soil Ecology, 35, pp. 79-93.
  • [26]. Tejada, M., García, C., González, J.L. & Hernández, M.T. (2006). Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil, Soil Biology and Biochemistry, 38, pp. 1413-1421.
  • [27]. Treonis, A.M., Austin, E.E., Buyer, J.S., Maul, J.E., Spicer, L. & Zasada, I.A. (2010). Effects of organic amendment and tillage on soil microorganisms and microfauna, Applied Soil Ecology, 46, pp. 103-110.
  • [28]. Walkey, A. (1964). A critical examination of a rapid method for determining organic carbon in soils effect of variations in digestion conditions and of inorganic soil constituents, Soil Science, 63, pp. 251-263.
  • [29]. Wang, J.J., Li, X.Y., Zhu, A.N., Zhang, X.K., Zhang, H.W. & Liang, W.J. (2012). Effects of tillage and residue management on soil microbial communities in North China, Plant Soil Environment, 58, pp. 28-33.
  • [30]. Wolna-Maruwka, A., Sawicka, A. & Kayzer, D. (2007). Size of selected groups of microorganisms and soil respiration activity fertilized by municipal sewage sludge, Polish Journal of Environmental Studies, 16, pp. 129-138.
  • [31]. Zhang. Q.Z., Yang, Z.L. & Wu, W.L. (2008). Role of crop residue management in sustainable agricultural development in the North China Plain, Journal of Sustainable Agriculture, 32, pp. 137-148.
  • [32]. www.tzob.org.tr (01.12.2010).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68f14d03-bff1-4788-8893-94193c25dd7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.