PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced diagnosis and monitoring of broken rotor bar faults in induction motors using a combined CEEMDAN-MLP approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a novel approach for diagnosing and monitoring Broken Rotor Bar (BRB) faults in induction motors through vibration signal analysis. The method integrates advanced signal processing techniques such as the Hilbert Huang Transform (HHT) with machine learning methods, specifically Multilayer Perceptron (MLP). The study initiates with an HHT application to identify fault-related harmonics, achieved through complete Empirical Ensemble Mode Decomposition with Adaptive Noise (CEEMDAN) of the vibration signal (Vx), producing intrinsic mode functions (IMFs). A statistical analysis, employing correlation coefficients (CC), facilitates the selection of relevant IMFs indicative of BRB faults. IMFs with CC values equal to or greater than 0.2, notably IMF1, IMF2, IMF3, and IMF4, appear informative. Following IMF selection, signal reconstruction ensues by incorporating these useful IMFs. After rebuilding the signal, we use global thresholding based on a statistical analysis that includes Root Mean Square (RMS) and Energy Coefficient (EC) calculations. The Signal Reconstruction Denoising (SRD) meets the criteria for selection. Spectral envelope analysis of SRD is then employed for BRB fault detection. The subsequent phase employs a Multi-Layer Perceptron (MLP) for BRB localization. Features utilized for training the MLP model include EC and various frequency components (fvb-, fvb+, 2fvb-, 2fvb+, 4fvb-, 4fvb+, 6fvb-, 6fvb+, 8fvb-, and 8fvb+). Results from MLP demonstrate exceptional performance, achieving a classification rate of 99.99%. The proposed CEEMDAN-MLP method exhibits robust efficiency, validated by experimental results, and offers promising prospects for BRB fault diagnosis and monitoring in induction motors.
Rocznik
Strony
673--690
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr., wzory
Twórcy
  • Electrical Engineering Laboratory (LGE), Department of Electrical Engineering, Faculty of Technology, University of M’sila, University Pole, Bourdj Bou Arreiridj Road, 28000 M’sila
autor
  • Electrical Engineering Laboratory (LGE), Department of Electrical Engineering, Faculty of Technology, University of M’sila, University Pole, Bourdj Bou Arreiridj Road, 28000 M’sila
  • Department of Electrical Engineering, Faculty of Technology, University of Mostaganem, Mostaganem 27000, Algeria
Bibliografia
  • [1] Chen, J., Hu, N., Zhang, L., Chen, L., Wang, B., & Zhou, Y. (2020). A Method for Broken Rotor Bars Diagnosis Based on Sum-of-Squares of Current Signals. Applied Sciences, 10(17), 5980. https://doi.org/10.3390/app10175980
  • [2] Antonino-Daviu, J.A., Quijano-Lopez, A., Rubbiolo, M., & Climente-Alarcon, V. (2018). Advanced analysis of motor currents for the diagnosis of the rotor condition in electric motors operating in mining facilities. IEEE Transactions on Industry Applications, 54(4), 3934-3942. https://doi.org/10.1109/TIA.2018.2818671
  • [3] Abdelkader, R., Kaddour, A., Bendiabdellah, A., & Derouiche, Z. (2018). Rolling Bearing Fault Diagnosis Based on an Improved Denoising Method Using the Complete Ensemble Empirical Mode Decomposition and the Optimized Thresholding Operation. IEEE Sensors Journal, 18(17), 7166-7172. https://doi.org/10.1109/JSEN.2018.2853136
  • [4] Lee, C.-Y., Huang, K.-Y., Jen, L.-Y., & Zhuo, G.-L. (2020). Diagnosis of Defective Rotor Bars in Induction Motors. Symmetry, 12(11), 1753. https://doi.org/10.3390/sym12111753
  • [5] Asad, B., Vaimann, T., Belahcen, A., Kallaste, A., Rassõlkin, A., & Iqbal, M. N. (2019). Broken rotor bar fault detection of the grid and inverter-fed induction motor by effective attenuation of the fundamental component. IET Electric Power Applications, 13(12), 2005-2014. https://doi.org/10.1049/iet-epa.2019.0350
  • [6] Asad, B., Vaimann, T., Belahcen, A., & Kallaste, A. (September 2018). Broken Rotor Bar Fault Diagnostic of Inverter Fed Induction Motor Using FFT, Hilbert and Park’s Vector Approach. 2018 XIII International Conference on Electrical Machines (ICEM). 2018 XIII International Conference on Electrical Machines (ICEM). https://doi.org/10.1109/icelmach.2018.8506957
  • [7] Sabbaghian-Bidgoli, F., & Poshtan, J. (2018). Fault Detection of Broken Rotor Bar Using an Improved Form of Hilbert-Huang Transform. Fluctuation and Noise Letters, 17(02), 1850012. https://doi.org/10.1142/s0219477518500128
  • [8] Bessam, B., Menacer, A., Boumehraz, M., & Cherif, H. (2015). DWT and Hilbert Transform for Broken Rotor Bar Fault Diagnosis in Induction Machine at Low Load. Energy Procedia, 74, 1248-1257. https://doi.org/10.1016/j.egypro.2015.07.769
  • [9] Puche-Panadero, R., Martinez-Roman, J., Sapena-Bano, A., Burriel-Valencia, J., & Riera-Guasp, M. (2020). Fault Diagnosis in the Slip-Frequency Plane of Induction Machines Working in Time-Varying Conditions. Sensors, 20(12), 3398. https://doi.org/10.3390/s20123398
  • [10] Drakaki, M., Karnavas, Y.L., Karlis, A.D., Chasiotis, I.D., & Tzionas, P. (2020). Study on fault diagnosis of broken rotor bars in squirrel cage induction motors: a multi-agent system approach using intelligent classifiers. IET Electric Power Applications, 14(2), 245-255. https://doi.org/10.1049/iet-epa.2019.0619
  • [11] Wang, J., Gao, R.X., & Yan, R. (2011). Broken-Rotor-Bar Diagnosis for Induction Motors. Journal of Physics: Conference Series, 305, 012026. https://doi.org/10.1088/1742-6596/305/1/012026
  • [12] Chen, Y., Rao, M., Feng, K., & Niu, G. (2023). Modified Varying Index Coefficient Autoregression Model for Representation of the Nonstationary Vibration from a Planetary Gearbox. IEEE Transactions on Instrumentation and Measurement, 72, 1-12. https://doi.org/10.1109/tim.2023.3259048
  • [13] Asad, B., Vaimann, T., Kallaste, A., Rassõlkin, A., Belahcen, A., & Iqbal, M.N. (2019). Improving Legibility of Motor Current Spectrum for Broken Rotor Bars Fault Diagnostics. Electrical, Control and Communication Engineering, 15(1), 1-8. https://doi.org/10.2478/ecce-2019-0001
  • [14] Mohamed, M.A., Mohamed, A.-A.A., Abdel-Nasser, M., Mohamed, E.E.M., & Hassan, M.A.M. (2019). Induction motor broken rotor bar faults diagnosis using ANFIS-based DWT. International Journal of Modelling and Simulation, 41(3), 220-233. https://doi.org/10.1080/02286203.href2019.1708173
  • [15] Chouidira, I., Khodja, D., & Chakroune, S. (2019). Continuous Wavelet Technique for Detection of Broken Bar Faults in Induction Machine. Traitement du Signal, 36(2), 171-176. https://doi.org/10.18280/ts.360207
  • [16] Valtierra-Rodriguez, M., Amezquita-Sanchez, J., Garcia-Perez, A., & Camarena-Martinez, D. (2019). Complete Ensemble Empirical Mode Decomposition on FPGA for Condition Monitoring of Broken Bars in Induction Motors. Mathematics, 7(9), 783. https://doi.org/10.3390/math7090783
  • [17] Wu, Y., & An, Q. (2019). Online diagnosis of broken rotor bar fault of squirrel-cage induction motor using a magnetic field measuring coil. IEEJ Transactions on Electrical and Electronic Engineering, 15(2), 291-303. https://doi.org/10.1002/tee.23056
  • [18] Lu, N., Li, M., Zhang, G., Li, R., Zhou, T., & Su, C. (2022). Fault feature extraction method for rotating machinery based on a CEEMDAN-LPP algorithm and synthetic maximum index. Measurement, 189, 110636. https://doi.org/10.1016/j.measurement.2021.110636
  • [19] Osowski, S., & Golgowski, M. (2023). Deep Classifiers and Wavelet Transformation for Fake Image Detection. Journal of Telecommunications and Information Technology, 4(2023), 1-8. https://doi.org/10.26636/jtit.2023.4.1336
  • [20] Cherif, B.D.E., Chouai, M., Seninete, S., & Bendiabdellah, A. (2022). Machine-Learning-Based Diagnosis of an Inverter-Fed Induction Motor. IEEE Latin America Transactions, 20(6), 901-911. https://doi.org/10.1109/tla.2022.9757372
  • [21] Abdelkader, R., Chérif, B.D.E., Bendiabdellah, A., & Kaddour, A. (2022). Three-phase inverters open-circuit faults diagnosis using an enhanced variational mode decomposition, wavelet packet analysis, and scalar indicators. Electrical Engineering, 104(6), 4477-4489. https://doi.org/10.1007/s00202-022-01633-1
  • [22] Talhaoui, H., Ameid, T., Aissa, O., & Kessal, A. (2022). Wavelet packet and fuzzy logic theory for automatic fault detection in induction motor. Soft Computing, 26(21), 11935-11949. https://doi.org/10.1007/s00500-022-07028-5
  • [23] Bouaouiche, K., Menasria, Y., & Khalfa, D. (2023). Detection and diagnosis of bearing defects using vibration signal processing. Archive of Mechanical Engineering, 433-452. https://doi.org/10.24425/ame.2023.146849
  • [24] Kim, M.-C., Lee, J.-H., Wang, D.-H., & Lee, I.-S. (2023). Induction Motor Fault Diagnosis Using Support Vector Machine, Neural Networks, and Boosting Methods. Sensors, 23(5), 2585. https://doi.org/10.3390/s23052585
  • [25] Chen, Y., Rao, M., Feng, K., & Zuo, M.J. (2022). Physics-Informed LSTM hyperparameters selection for gearbox fault detection. Mechanical Systems and Signal Processing, 171, 108907. https://doi.org/10.1016/j.ymssp.2022.108907
  • [26] Luong, P. (2019). Broken rotor bar dataset information (Version 5) [Data set]. Zenodo. https://doi.org/10.5281/ZENODO.3514322
  • [27] Aishwarya, M., & Brisilla, R.M. (2023). Design and Fault Diagnosis of Induction Motor Using ML-Based Algorithms for EV Application. IEEE Access, 11, 34186-34197. https://doi.org/10.1109/access.2023.3263588
  • [28] Chisedzi, L.P., & Muteba, M. (2023). Detection of Broken Rotor Bars in Cage Induction Motors Using Machine Learning Methods. Sensors, 23(22), 9079. https://doi.org/10.3390/s23229079
  • [29] Hernandez-Ramirez, V., Almanza-Ojeda, D.-L., Cardenas-Cornejo, J.-J., Contreras-Hernandez, J.-L., & Ibarra-Manzano, M.-A. (2023). Detection of Broken Bars in Induction Motors Using Histogram Analysis of Current Signals. Applied Sciences, 13(14), 8344. https://doi.org/10.3390/app13148344
  • [30] Samiullah, M., Ali, H., Zahoor, S., & Ali, A. (2024). Fault Diagnosis on Induction Motor using Machine Learning and Signal Processing (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2401.15417
  • [31] Rouaibia, R., Djeghader, Y., & Moussaoui, L. (2024). Artificial neural network and discrete wavelet transform for inter-turn short circuit and broken rotor bars faults diagnosis under various operating conditions. Electrical Engineering & Electromechanics, 3, 31-37. https://doi.org/10.20998/2074-272x.2024.3.04
  • [32] Osornio-Rios, R.A., Cueva-Perez, I., Alvarado-Hernandez, A.I., Dunai, L., Zamudio-Ramirez, I., & Antonino-Daviu, J.A. (2024). FPGA-Microprocessor Based Sensor for Faults Detection in Induction Motors Using Time-Frequency and Machine Learning Methods. Sensors, 24(8), 2653. https://doi.org/10.3390/s24082653
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68f1388e-4ca8-448d-b54e-41a23271c70b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.