PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A dynamic submerging motion model of the hybrid-propelled unmanned underwater vehicle: Simulation and experimental verification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hybrid propulsion in underwater vehicles is the new idea of combining conventional propulsion systems such as screw propellers with other kinds of propulsion like oscillating biomimetic fins, glider wings or jet thrusters. Each of these propulsion systems has its own benefits and drawbacks, and the goal is to have them complement each other in certain conditions. This paper covers the topic of a dynamic model of the pitch and heave motion of the HUUV (hybrid unmanned underwater vehicle) using screw propellers and biomimetic lateral fins. Firstly, the simulation model of the vehicle performing depth and pitch change is presented. Secondly, the vehicle’s hydrodynamic coefficients obtained from CFD simulations are discussed. Thirdly, the results of the HUUV experimental studies in a swimming pool are presented. Lastly, simulation results are compared with those of the experiment to verify the correctness of the model. The vehicle’s motion in the swimming pool during the experiments was recorded using a submerged camcorder and then analysed using the Tracker software.
Rocznik
Strony
207--218
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Cracow, Poland
Bibliografia
  • [1] Chae, C. (2021). Depth control of autonomous underwater vehicle using robust tracking control, Journal of the Korean Society of Mechanical Engineers 20(4): 66-72.
  • [2] Desai, R.P. and Manjarekar, N.S. (2021). Norm-based robust pitch channel control of an autonomous underwater vehicle, IFAC-PapersOnLine 54(16): 258-265.
  • [3] Fossen, T. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, Chichester, DOI: 10.1002/9781119994138.
  • [4] Ha, T., Binugroho, E., Seo, Y. and Choi, J.W. (2008). Sliding mode control for autonomous underwater vehicle under open control platform environment, 2008 SICE Annual Conference, Chofu, Japan, pp. 1345-1350.
  • [5] Horak, Tran, T., Nguyen, T. and Hoang, Q. (2020). A motion model of a complex-shaped remotely operated underwater vehicle, Advances in Military Technology 15(2): 343-353.
  • [6] Huy, T., Choi, H.-S., Nguyen, N.-D., Jo, S.-W. and Kim, J.-Y. (2016). Steering and diving control of a small-sized AUV, in V.H. Duy et al. (Eds), AETA 2015: Recent Advances in Electrical Engineering and Related Sciences, Springer International Publishing, Cham, pp. 619-632.
  • [7] Jurczyk, K., Piskur, P. and Szymak, P. (2020). Parameters identification of the flexible fin kinematics model using vision and genetic algorithms, Polish Maritime Research 27(2): 39-47.
  • [8] Kim, K. and Choi, H.S. (2004). Navigation and control for a test bed AUV-SNUUV I, Proceedings of the 2004 International Symposium on Underwater Technology, Taipei, Taiwan, pp. 89-94, DOI: 10.1109/UT.2004.1405485.
  • [9] Ladyżyńska-Kozdraś, E. (2012). Application of the Maggi equations to mathematical modeling of a robotic underwater vehicle as an object with superimposed non-holonomic constraints treated as control laws, Solid State Phenomena 180: 152-159.
  • [10] Ladyżyńska-Kozdraś, E. (2014a). The dynamic analysis of a torpedo-shaped underwater vehicle as an object with superimposed nonholonomic constraints treated as control laws, Solid State Phenomena 210: 320-325.
  • [11] Ładyżyńska-Kozdraś, E. (2014b). Robotnic underwater vehicle steered by a gyroscope-Model of navigation and dynamics, in T. Březina and R. Jabloński (Eds), Mechatronics 2013, Springer International Publishing, Cham, pp. 627-632.
  • [12] Liu, C., Li, J., Yang, S. and Xiang, X. (2023). Simultaneously tracking and pitch control of underwater towed vehicle with multiple elevators: A finite-time fuzzy approach, International Journal of Fuzzy Systems 25: 264-274, DOI: 10.1007/s40815-022-01270-7.
  • [13] Maalouf, D., Chemori, A. and Creuze, V. (2015). L1 adaptive depth and pitch control of an underwater vehicle with real-time experiments, Ocean Engineering 98(2): 66-77.
  • [14] Malec, M. and Morawski, M. (2014). Analysis of thrust of underwater vehicle with undulating propulsion, in R. Szewczyk et al. (Eds), Recent Advances in Automation, Robotics and Measuring Techniques, Springer, Cham, pp. 453-461, DOI: 10.1007/978-3-319-05353-0_43.
  • [15] Morawski, M., Malec, M. and Zajac, J. (2014). Development of cyberfish-Polish biomimetic unmanned underwater vehicle BUUV, Applied Mechanics and Materials 613: 76-82.
  • [16] Morawski, M., Slota, A., Zajac, J., Malec, M. and Krupa, K. (2018). Hardware and low-level control of biomimetic underwater vehicle designed to perform ISR tasks, Journal of Marine Engineering and Technology 16(4): 227-237.
  • [17] Morawski, M., Talarczyk, T. and Malec, M. (2021). Depth control for biomimetic and hybrid unmanned underwater vehicles, Technical Transactions 118(1), DOI: 10.37705/TechTrans/e2021024.
  • [18] Petrich, J., Neu, W. and Stilwell, D. (2007). Identification of a simplified AUV pitch axis model for control design: Theory and experiments, OCEANS 2007, Vancouver, Canada, pp. 1-7, DOI: 10.1109/OCEANS.2007.4449350.
  • [19] Petrich, J. and Stilwell, D.J. (2010). Model simplification for AUV pitch-axis control design, Ocean Engineering 37(7): 638-651.
  • [20] Piskur, P. (2022). Strouhal number measurement for novel biomimetic folding fins using an image processing method, Journal of Marine Science and Engineering 10, Article ID: 484, DOI: 10.3390/jmse10040484.
  • [21] Piskur, P., Szymak, P., Flis, L. and Sznajder, J. (2020). Analysis of a fin drag force in a biomimetic underwater vehicle, Nase More 67(3): 192-198.
  • [22] Piskur, P., Szymak, P., Przybylski, M., Naus, K., Jaskolski, K. and Zokowski, M. (2021). Innovative energy-saving propulsion system for low-speed biomimetic underwater vehicles, Energies 14(24), Article ID: 8418, DOI: 10.3390/en14248418.
  • [23] Sakaki, A. and Kerdabadi, M.S. (2020). Experimental and numerical determination of the hydrodynamic coefficients of an autonomous underwater vehicle, Zeszyty Naukowe Akademii Morskiej w Szczecinie 62(134): 124-135.
  • [24] Severholt, J. (2017). Generic 6-DOF Added Mass Formulation for Arbitrary Underwater Vehicles Based on Existing Semi-Empirical Methods, Master’s thesis, Royal Institue of Technology, Stockholm.
  • [25] Shrivastava, A., Karthikeyan, M. and Rajagopal, P. (2021). Modelling and motion control of an underactuated autonomous underwater vehicle, 2021 6th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Tokyo, Japan, pp. 62-68, DOI: 10.1109/ACIRS52449.2021.9519334.
  • [26] Steenson, L.V., Phillips, A.B., Turnock, S.R., Furlong, M.E. and Rogers, E. (2012). Effect of measurement noise on the performance of a depth and pitch controller using the model predictive control method, 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, UK, pp. 1-8, DOI: 10.1109/AUV.2012.6380732.
  • [27] Szymak, P., Piskur, P., Piatek, P., Muchowski, J. and Trawinski, S. (2021). Modeling and simulation of innovative autonomous underwater vehicle past, 2nd International Conference of Maritime Science and Techology, Dubrovnik, Croatia, pp. 322-346.
  • [28] Zeng, J., Li, S., Li, Y., Liu, X., Wang, X. and Liu, J. (2017). Research on dynamic modeling and predictive control of portable autonomous underwater vehicle, OCEANS 2017, Anchorage, USA, pp. 1-5.
  • [29] Zhou, H., Liu, K., Li, Y. and Ren, S. (2015). Dynamic sliding mode control based on multi-model switching laws for the depth control of an autonomous underwater vehicle, International Journal of Advanced Robotic Systems 12(7), DOI: 10.5772/61038.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68eda92e-b4b1-4232-b1a1-baa8c4dfe4a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.