Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this report, we have carried out work on the concept of optical engineering for tuning solar spectrum onto photocatalytic materials of the matched band gap using a holographic concentrator. Processing parameters of holographic concentrators have been designed suitably to have a control over the desired wavelength range for photocatalytic materials of the matched band gap.
Czasopismo
Rocznik
Tom
Strony
237--247
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Photonics Lab, Department of Physics, National Institute of Technology, Jamshedpur 831014, India
autor
- Biomedical Optics Lab, Department of Applied Physics, Indian School of Mines, Dhanbad 826004, Jharkhand, India
autor
- Biomedical Optics Lab, Department of Applied Physics, Indian School of Mines, Dhanbad 826004, Jharkhand, India
autor
- Photonics Lab, Department of Physics, National Institute of Technology, Jamshedpur 831014, India
Bibliografia
- [1] IDA S., YAMADA K., MATSUKA M., HAGIWARA H., ISHIHARA T., Photoelectrochemical hydrogen production from water using p-type and n- type oxide semiconductor electrodes, Electrochimica Acta 82, 2012, pp. 397– 401.
- [2] OSTERLOH F.E., PARKINSON B.A., Recent developments in solar water-splitting photocatalysis, MRS Bulletin 36(01), 2011, pp. 17–22.
- [3] FUJISHIMA A., HONDA K., Electrochemical evidence for the mechanism of the primary stage of photosynthesis, Bulletin of the Chemical Society of Japan 44(4), 1971, pp. 1148–1150.
- [4] KELLY N.A., GIBSON T.L., Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting, International Journal of Hydrogen Energy 31(12), 2006, pp. 1658–1673.
- [5] GIBSON T.L., KELLY N.A., Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices, International Journal of Hydrogen Energy 35(3), 2010, pp. 900–911.
- [6] MAKUTA I.D., POZNYAK S.K., KULAK A.I., Photoelectrochemical determination of bandgap energy in surface layers formed on semiconductor electrodes, Electrochimica Acta 40(11), 1995, pp. 1761–1767.
- [7] BOLTON J.R., Solar photoproduction of hydrogen: a review, Solar Energy 57(1), 1996, pp. 37–50.
- [8] ABE R., Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 11(4), 2010, pp. 179–209.
- [9] WALTER M.G., WARREN E.L., MCKONE J.R., BOETTCHER S.W., QIXI MI, SANTORI E.A., LEWIS N.S., Solar water splitting cells, Chemical Reviews 110(11), 2010, pp. 6446–6473.
- [10] FUJISHIMA A., HONDA K., Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 1972, pp. 37–38.
- [11] ARYAL K., PANTHA B.N., LI J., LIN J.Y., JIANG H.X., Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells, Applied Physics Letters 96(5), 2010, article 052110.
- [12] LUDMAN J.E., Holographic solar concentrator, Applied Optics 21(17), 1982, pp. 3057–3058.
- [13] SHAKHER C., YADAV H.L., Dependence of diffraction efficiency of holographic concentrators on angle of illumination, hologram-thickness and wavelength of illuminating light, Journal of Optics 21(6), 1990, pp. 267–272.
- [14] WINSTON R., Light collection within the framework of geometrical optics, Journal of the Optical Society of America 60(2), 1970, pp. 245–247.
- [15] LUQUE A., ARAÚJO G.L., Solar Cells and Optics for Photovoltaic Concentration, A. Hilger, 1989.
- [16] WINSTON R., ZHANG W., BALKOSKI K.M., Light concentration apparatus, systems and methods, US8684545 B2, 2014.
- [17] CHANG B.J., LEONARD C.D., Dichromated gelatin for the fabrication of holographic optical elements, Applied Optics 18(14), 1979, pp. 2407–2417.
- [18] AKBARI H., NAYDENOVA I., MARTIN S., Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications, Applied Optics 53(7), 2014, pp. 1343–1353.
- [19] MEI-LI HSIEH, WEI-CHENG CHEN, HONG-YU CHEN, SHAWN-YU LIN, Optimization of light diffraction efficiency and its enhancement from a doped-PMMA volume holographic material, Optics Communications 308, 2013, pp. 121–124.
- [20] http://www.integraf.com/shop/pfg-01-holographic-film-plates
- [21] KELLY N.A., GIBSON T.L., Solar energy concentrating reactors for hydrogen production by photoelectrochemical water splitting, International Journal of Hydrogen Energy 33(22), 2008, pp. 6420–6431.
- [22] PEHARZ G., DIMROTH F., WITTSTADT U., Solar hydrogen production by water splitting with a conversion efficiency of 18%, International Journal of Hydrogen Energy 32(15), 2007, pp. 3248–3252.
- [23] ABHIJIT GHOSH, RANJAN R., NIRALA A.K., YADAV H.L., Design and analysis of processing parameters of hololenses for wavelength selective light filters, Optik – International Journal for Light and Electron Optics 125(9), 2014, pp. 2191–2194.
- [24] KOCHA S.S., TURNER J.A., Displacement of bandedges of GaInP2 in aqueous electrolytes induced by surface modification, Journal of the Electrochemical Society 142(8), 1995, pp. 2625–2630.
- [25] DEUTSCH T.G., KOVAL C.A., TURNER J.A., III–V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN, The Journal of Physical Chemistry B 110(50), 2006, pp. 25297–25307.
- [26] LICHT S., TENNE R., DAGAN G., HODES G., MANASSEN J., CAHEN D., TRIBOULET R., RIOUX J., LEVY-CLEMENT C., High efficiency n-Cd(Se,Te)/S= photoelectrochemical cell resulting from solution chemistry control, Applied Physics Letters 46(6), 1985, pp. 608–609.
- [27] CHANG K.C., HELLER A., SCHWARZ B., MENEZES S., MILLER B., Stable semiconductor liquid junction cell with 9 percent solar-to-electrical conversion efficiency, Science 196(4294), 1977, pp. 1097–1099.
- [28] PARKINSON B.A., HELLER A., MILLER B., Effects of cations on the performance of the photoanode in the n-GaAs|K2Se-K2Se2-KOH|C semiconductor liquid junction solar cell, Journal of the Electrochemical Society 126(6), 1979, pp. 954–960.
- [29] HELLER A., MILLER B., THIEL F.A., 11.5% solar conversion efficiency in the photocathodically protected p-InP/V3+-V2+-HCI/C semiconductor liquid junction cell, Applied Physics Letters 38(4), 1981, p. 282.
- [30] TENNE R., WOLD A., Passivation of recombination centers in n-WSe2 yields high efficiency (>14%) photoelectrochemical cel, Applied Physics Letters 47(7), 1985, p. 707.
- [31] GOBRECHT J., TRIBUTSCH H., GERISCHER H., Performance of synthetical n-MoSe2 in electrochemical solar cells, Journal of the Electrochemical Society 125(12), 1978, pp. 2085–2086.
- [32] NAKATO Y., UEDA K., YANO H., TSUBOMURA H., Effect of microscopic discontinuity of metal overlayers on the photovoltages in metal-coated semiconductor-liquid junction photoelectrochemical cells for efficient solar energy conversion, The Journal of Physical Chemistry 92(8), 1988, pp. 2316–2324.
- [33] ROSENBLUTH M.L., LEWIS N.S., Kinetic studies of carrier transport and recombination at the n-silicon methanol interface, Journal of the American Chemical Society 108(16), 1986, pp. 4689–4695.
- [34] CAHEN D., YIH-WEN CHEN, n-CuInSe2 based photoelectrochemical cells: improved, stable performance in aqueous polyiodide through rational surface and solution modifications, Applied Physics Letters 45(7), 1984, p. 746.
- [35] LEWERENZ H.J., GOSLOWSKY H., HUSEMANN K.-D., FIECHTER S., Efficient solar energy conversion with CuInS2, Nature 321(6071), 1986, pp. 687–688.
- [36] NOZIK A.J., MEMMING R., Physical chemistry of semiconductor-liquid interfaces, The Journal of Physical Chemistry 100(31), 1996, pp. 13061–13078.
- [37] KOGELNIK H., Coupled wave theory for thick hologram gratings, The Bell System Technical Journal 48(9), 1969, pp. 2909–2947.
- [38] GAYLORD T.K., MOHARAM M.G., Thin and thick gratings: terminology clarification, Applied Optics 20(19), 1981, pp. 3271–3273.
- [39] SAXBY G., Practical Holography, Prentice Hall International, UK, 1988.
- [40] COLLIER R.J., BURCKHARDT C.B., LIN L.H., Optical Holography, Academic Press, New York, 1971.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68eb3122-62e1-4bba-a83b-7508f858d784