PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the parameters of respiration patterns extracted from thermal image sequences

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Remote estimation of vital signs is an important and active area of research. The goal of this work was to analyze the feasibility of estimating respiration parameters from video sequences of faces recorded using a mobile thermal camera. Different estimators were analyzed and experimentally verified. It was demonstrated that the respiration rate, peri-odicity of respiration, and presence and length of apnea periods could be reliably estimated from signals recorded using a portable thermal camera. The size of the camera and efficiency of the methods allow the implementation of this method in smart glasses.
Twórcy
autor
  • Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
Bibliografia
  • [1] Nelson NM. Members of task force on prolonged apnea. Reports of the task force on prolonged apnea of the American Academy of Pediatrics. Pediatrics 1978;61:651–2.
  • [2] Eckert DJ, Jordan AS, Merchia P, Malhotra A. Central sleep apnea, pathophysiology and treatment. Chest 2007;131 (February (2)):595–607.
  • [3] Kushida CA, Littner MR, Morgenthaler T, Alessi CA, Bailey D, Coleman Jr J, et al. Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep 2005;28(4):499–521.
  • [4] Smith I, Mackay J, Fahrid N, Krucheck D. Respiratory rate measurement: a comparison of methods. Br J Healthc Assist 2011;05(01):18–23.
  • [5] Neuman MI, Monuteaux MC, Scully KJ, Bachur RG. Prediction of pneumonia in a pediatric emergency department. Pediatrics 2011;128:246–53.
  • [6] Nijman RG, Thompson M, van Veen M, Perera R, Moll HA, Oostenbrink R, et al. Derivation and validation of age and temperature specific reference values and centile charts to predict lower respiratory tract infection in children with fever: prospective observational study. BMJ 2012;345:e4224.
  • [7] Cretikos MA, Bellomo R, Hillman K, Chen J, Finfer S, Flabouris A. Respiratory rate: the neglected vital sign. Med J Aust 2008;188:657–9.
  • [8] Bonita R, Beaglehole R, Kjellstrom T. Basic epidemiology. 2nd ed. WHO; 2006.
  • [9] MedicineNet.Com. Webster's new world medical dictionary. 3rd ed. Hoboken, New Jersey: Wiley Publishing, Inc.; 2008.
  • [10] Brouillette RT, Morrow AS, Weese-Mayer DE, Hunt CE. Comparison of respiratory inductive plethysmograpy and thoracic impedance for apnea. J Pediatr 1987;111 (3):377–83.
  • [11] Anaxsys Technology Ltd.. RespiR8; 2011, http://www.respir8.com/about_respiR8.html.
  • [12] Macknet MR, Kimball-Jones PL, Applegate RL, Martin RD, Allard MW. Accuracy and tolerance of a novel bioacoustic respiratory sensor in pediatric patients. Anesthesiology 2007;A84.
  • [13] Hernandez J, McDuff D, Picard RW. Biowatch: estimation of heart and breathing rates from wrist motions. 9th Pervasive Health Conference; 2015. pp. 167–76.
  • [14] American Academy of Sleep Medicine. Obstructive sleep apnea. AASM; 2008, www.aasmnet.org.
  • [15] American Academy of Sleep Medicine. International classification of sleep disorders, revised: diagnostic and coding manual. Chicago, IL: American Academy of Sleep Medicine; 2001.
  • [16] Standards of Practice Committee of the American Sleep Disorders Association. Practice parameters for the indications for polysomnography and related procedures. Sleep 1997;20:406–22.
  • [17] Przystup P, Bujnowski A, Ruminski J, Wtorek J. A multisensor detector of a sleep apnea for using at home. The 6th HSI Conference; 2013. pp. 513–7.
  • [18] Bernal EA, Mestha LK, Shilla E. Non contact monitoring of respiratory function via depth sensing. Biomedical and Health Informatics Conference (BHI); 2014. pp. 101–4.
  • [19] Ruminski J, Nowakowski A, Kaczmarek M, Hryciuk M. Model-based parametric images in dynamic thermography. Pol J Med Phys Eng 2000;6(3):159–65.
  • [20] Ruminski J, Kaczmarek M, Renkielska A, Nowakowski A. Thermal parametric imaging in the evaluation of skin burn depth. IEEE Trans Biomed Eng 2007;54(2):303–12.
  • [21] Fei J, Zhu Z, Pavlidis I. Imaging breathing rate in the CO2 absorption band. Proc. of the 27th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society; 2005.
  • [22] Murthy R, Pavlidis I. Non-contact monitoring of respiratory function using infrared imaging. IEEE Eng Med Biol Mag 2006;25:57–68.
  • [23] Murthy JN, van Jaarsveld J, Fei J, Pavlidis I, Harrykissoon RI, Lucke JF, et al. Thermal infrared imaging: a novel method to monitor airflow during polysomnography. Sleep 2009;32:1521–7.
  • [24] Fei J, Pavlidis I. Thermistor at a distance: unobtrusive measurement of breathing. IEEE Trans Biomed Eng 2010;57 (4):988–98.
  • [25] Abbas AK, Heimann K, Jergus K, Orlikowsky T, Leonhardt S. BioMed Eng [OnLine] 2011;10(93):1–17.
  • [26] Ruminski J. Evaluation of the respiration rate and pattern using a portable thermal camera. Proc. of the 13th Quantitative Infrared Thermography Conference; 2016.
  • [27] Zhou Y, Tsiamyrtzis P, Lindner P, Timofeyev I, Pavlidis I. Spatio-temporal smoothing as a basis for facial tissue tracking in thermal imaging. IEEE Trans Biomed Eng 2013;60 (May (5)):1280–9.
  • [28] AL-Khalidi FQ, Saatchi R, Burke D, Elphick H. Tracking human face features in thermal images for respiration monitoring. ACS/IEEE International Conference on Computer Systems and Applications – AICCSA 2010; 2010. pp. 1–6.
  • [29] Chauvin R, Hamel M, Brière S, Ferland F, Grondin F, Létourneau D, et al. Contact-free respiration rate monitoring using a pan–tilt thermal camera for stationary bike telerehabilitation sessions. IEEE Syst J 2014;(99): 1–102.
  • [30] Duong D, Shastri D, Tsiamyrtzis P, Pavlidis I. Spatiotemporal reconstruction of the breathing function, Medical Image Computing and Computer Assisted Intervention – MICCAI 2012, LNCS 7510. Springer; 2012. p. 149–56.
  • [31] Evena Medical (2014). http://evenamed.com/_even5672/products/glasses.
  • [32] Ruminski J, Bujnowski A, Wtorek J, Andrushevich A, Biallas M, Kistler R. Interactions with recognized objects. Proc. of HSI 2014 Conference; 2014. pp. 101–5.
  • [33] Ruminski J, Smiatacz M, Bujnowski A, Andrushevich A, Biallas M, Kistler R. Interactions with recognized patients using smart glasses. Proc. of HSI 2015 Conference; 2000. pp. 187–94.
  • [34] Czuszynski K, Ruminski J. Interaction with medical data using QR-codes. Proc. of HSI 2014 Conference; 2014. pp. 182–7.
  • [35] Stanifer JW. A peculiar type of dyspnea: Kussmaul, Cheyne- stokes, and biot respiration. Hist Med 2015;3(1):1–7.
  • [36] Sörnmo L, Laguna P. Bioelectrical signal processing in cardiac and neurological applications. Academic Press; 2005.
  • [37] Marzec M, Koprowski R, Wrobel Z. Detection of selected face areas on thermograms with elimination of typical problems. J Med Inform Technol 2010;16:151–9.
  • [38] Kwasniewska A, Ruminski J. Face detection using a portable thermal camera. Proc. of the 13th Quantitative Infrared Thermography Conference; 2016.
  • [39] Sheldon LK. Oxygenation. Jones and Bartlett Publishers; 2008.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68e667ed-e367-4a00-9631-f82a0d919ecb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.