PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie rozruchu ogniwa paliwowego SOFC

Identyfikatory
Warianty tytułu
EN
Solid oxide fuel cell – modeling a start-up procedure
Języki publikacji
PL
Abstrakty
PL
Przedstawiono zagadnienia dotyczące modelowania ogniwa paliwowego SOFC w stanach przejściowych (dynamika). Na podstawie stworzonego modelu dynamicznego ogniwa zbadano procedurę rozruchową oraz opracowano po-trzebną do tego strategię właściwego prowadzenia urządzenia.
EN
The paper presents the problems concerning the modeling of transient (dynamic) behavior of Solid Oxide Fuel Cell. On the basis of created dynamic model of SOFC, a start-up procedure is modeled and adequate control strategy developed. Simulated results are compared against available experimental data.
Wydawca
Czasopismo
Rocznik
Tom
Strony
88--93
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Wydział Mechaniczny Energetyki i Lotnictwa Politechniki Warszawskiej
  • Wydział Mechaniczny Energetyki i Lotnictwa Politechniki Warszawskiej
Bibliografia
  • [1] Al-Sulaiman, F., I. Dincer, and F. Hamdullahpur, Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic rankine cycle, International Journal of Hydrogen Energy, 35(10), 5104–5113, 2010.
  • [2] Andrade, T., and R. Muccillo, Effect of zinc oxide and boron oxide addition on the properties of yttrium-doped barium zirconate [efeito da adiçăo de óxido de zinco e de óxido de boro nas propriedades do zirconato de bário dopado com ítrio], Ceramica, 57(342), 244–253, 2011.
  • [3] Badwal, S., R. Deller, K. Foger, Y. Ramprakash, and J. Zhang, Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells, Solid State Ionics, 99(3–4), 297–310, 1997.
  • [4] Bisson, J.-F., D. Fournier, M. Poulain, O. Lavigne, and R. Mevrel, Thermal conductivity of yttria-zirconia single crystals, determined with spatially resolved infrared thermography, The Journal Journal of the American Ceramic Society, 83(8), 1993–1998, 2000.
  • [5] Budzianowski, W. M., An oxy-fuel mass-recirculating process for H2 production with CO2 capture by autothermal catalytic oxyforming of methane, International Journal of Hydrogen Energy, 35(14), 7454–7469, 2010.
  • [6] Cao, H., Z. Deng, X. Li, J. Yang, and Y. Qin, Dynamic modeling of electrical characteristics of solid oxide fuel cells using fractional derivatives, International Journal of Hydrogen Energy, 35(4), 1749–1758, 2010.
  • [7] Cao, H., X. Li, Z. Deng, J. Jiang, J. Yang, J. Li, and Y. Qin, Dynamic modeling and experimental validation for the electrical coupling in a 5-cell solid oxide fuel cell stack in the perspective of thermal coupling, International Journal of Hydrogen Energy, 36(7), 4409–4418, 2011.
  • [8] Chaichana, K., Y. Patcharavorachot, B. Chutichai, D. Saebea, S. Assabumrungrat, and A. Arpornwichanop, Neural network hybrid model of a direct internal reforming solid oxide fuel cell, International Journal of Hydrogen Energy, 37(3), 2498–2508, 2012.
  • [9] Christman, K., and M. Jensen, Solid oxide fuel cell performance with cross-flow roughness, Journal of Fuel Cell Science and Technology, 8(2), 024,501, 2011.
  • [10] Colombo, K., V. Kharton, and O. Bolland, Simulation of an oxygen membrane-based gas turbine power plant: Dynamic regimes with operational and material constraints, Energy and Fuels, 24(1), 590–608, 2010.
  • [11] Corporation, H., HYSYS.Plant 2.1 User guide, 1996.
  • [12] Furusaki, A., H. Konno, and R. Furuichi, Pyrolitic process of la(iii)-cr(vi) precursor for the perovskitc type lanthanum chromium oxide, Thermochimica Acta, 253, 253–264, 1995.
  • [13] Hayashi, H., M. Watanabe, and H. Inaba, Measurement of thermal expansion coefficient of lacro3, Thermochimica Acta, 359(1), 77 – 85, 2000.
  • [14] Kupecki, J., and K. Badyda, SOFC-based micro-CHP system as an example of efficient power generation unit, Archives of Thermodynamics, 32(3), 33–43, 2011.
  • [15] Lanzini, A., M. Santarelli, and G. Orsello, Residential solid oxide fuel cell generator fuelled by etha-nol: Cell, stack and system modelling with a preliminary experiment, Fuel Cells, 10(4), 654–675, 2010.
  • [16] Milewski, J., Advanced model of solid oxide fuel cell, in Fuel Cell Science, Engineering & Technology Conference, FuelCell2010-33042, ASME, 2010.
  • [17] Milewski, J., Advanced mathematical model of sofc for system optimization, in ASME Turbo Expo 2010: Power for Land, Sea and Air, GT2010-22031, ASME, 2010.
  • [18] Milewski, J., Mathematical model of SOFC for complex fuel compositions, in International Colloquium on Environmentally Preferred Advanced Power Generation, ICEPAG2010-3422, 2010.
  • [19] Milewski, J., SOFC hybrid system optimization using an advanced model of fuel cell, in Proceedings of the 2011 Mechanical Engineering Annual Conference on Sustainable Research and Innovation, pp. 121–129, 2011.
  • [20] Milewski, J., and J. Lewandowski, Analysis of design and construction of solid oxide fuel cell in terms of their dynamic operation, Archivum Combustionis, 30, 146–154, 2010.
  • [21] Milewski, J., and J. Lewandowski, Cechy konstrukcyjne ogniw paliwowych SOFC instotne z punktu dynamiki ich pracy, Cieplne Maszyny Przepływowe–Turbomachinery, 138, 91–98, 2010.
  • [22] Milewski, J., and J. Lewandowski, Comparative analysis of time constants in solid oxide fuel cell processes – selection of key processes for modeling power systems, Journal of Power Technologies, 91(1), 1–5, 2011.
  • [23] Milewski, J., and J. Lewandowski, Comparative analysis of time constants in Solid Oxide Fuel Cell processes – selection of key processes for modeling power system, in Third International Conference on Applied Energy, pp. 2683–2690, 2011.
  • [24] Milewski, J., K. Badyda, and A. Miller, The influence of fuel composition on Solid Oxide Fuel Cell obtained by using the advanced mathematical model, Journal of Power Technologies, 91(4), 179–185, 2011.
  • [25] Milewski, J., A. Miller, and J. Lewandowski, Comparative analysis of the time constants of the main processes occurring in a solid oxide fuel cell, in Fuel Cell Seminar, p. 338, San Antonio, TX, USA, 2010.
  • [26] Milewski, J., K. Świrski, M. Santarelli, and P. Leone, Advanced Methods of Solid Oxide Fuel Cell Modeling, 1st edition ed., 226 pp., Springer-Verlag London Ltd., 2011.
  • [27] Mueller, F., R. Gaynor, A. Auld, J. Brouwer, F. Jabbari, and G. G.S. Samuelsen, Synergistic integra-tion of a gas turbine and solid oxide fuel cell for improved transient capability, Journal of Power Sources, 176(1), 229–239, 2008.
  • [28] Sakai, N., and S. Stolen, Heat capacity and thermodynamic properties of lanthanum(iii) chromate(iii): LaCr03, at temperatures from 298.15 k. evaluation of the thermal conductivity, The Journal of Chemical Thermodynamics, 27(5), 493–506, 1995.
  • [29] Tarroja, B., F. Mueller, J. Maclay, and J. Brouwer, Parametric thermodynamic analysis of a solid ox-ide fuel cell gas turbine system design space, Journal of Engineering for Gas Turbines and Power, 132(7), 072,301, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68e513cd-c18d-46ef-bdd2-e41fbabfec15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.