Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applicability of cryoconite consortia of microorganisms and glacier-dwelling animals in astrobiological studies

Treść / Zawartość
Warianty tytułu
Języki publikacji
For several years it has been of interest to astrobiologists to focus on Earth’s glaciers as a habitat that can be similar to glaciers on other moons and planets. Microorganisms on glaciers form consortia – cryoconite granules (cryoconites). They are granular/spherical mineral particles connected with archaea, cyanobacteria, heterotrophic bacteria, algae, fungi, and micro animals (mainly Tardigrada and Rotifera). Cryophilic organisms inhabiting glaciers have been studied in different aspects: from taxonomy, ecology and biogeography, to searching of biotechnological potentials and physiological strategies to survive in extreme glacial habitats. However, they have never been used in astrobiological experiments. The main aim of this paper is brief review of literature and supporting assumptions that cryoconite granules and microinvertebrates on glaciers, are promising models in astrobiology for looking for analogies and survival strategies in terms of icy planets and moons. So far, astrobiological research have been conducted on single strains of prokaryotes or microinvertebrates but never on a consortium of them. Due to the hypothetical similarity of glaciers on the Earth to those on other planets these cryoconites consortia of microorganisms and glacier microinvertebrates may be applied in astrobiological experiments instead of the limno-terrestrial ones used currently. Those consortia and animals have qualities to use them in such studies and they may be the key to understanding how organisms are able to survive, reproduce and remain active at low temperatures.
Opis fizyczny
Bibliogr. 78 poz., zdj.
  • Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
  • Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
  • Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland,
  • 1. Abbot D.S., Voigt A., Li D., et al. (2013) Robust elements of Snowball Earth atmospheric circulation and oases for life. Journal of Geophysical Research: Atmospheres 118: 6017-6027.
  • 2. Amann R., Fuchs B.M., Behrens S. (2001) The identification of microorganisms by fluorescence in situ hybridisation. Current Opinion in Biotechnology 12: 231-236.
  • 3. Anesio A.M., Laybourn-Parry J. (2012) Glaciers and ice sheets as a biome. Trends in Ecology & Evolution 4: 219-225.
  • 4. Baqué M., de Vera J.P., Rettberg P., et al. (2013) The BOSS and BIOMEX space experiments on the EXPOSE–R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes. Acta Astronomica 91: 180-186.
  • 5. Bellas C.M., Anesio A.M., Telling J., et al. (2013) Viral impacts on bacterial communities in Arctic cryoconite. Environmental Research Letters 8 045021 (9pp), doi:10.1088/1748-9326/8/4/045021
  • 6. Bielewicz S., Bell E., Kong W., et al. (2011) Protist diversity in a permanently icecovered Antarctic Lake during the polar night transition. The ISME Journal 5: 1559-1564.
  • 7. Bradbury J. (2001) Of tardigrades, trehalose, and tissue engineering. The Lancet 358: 392.
  • 8. Boetius A., Anesio A.M., Deming J.W., et al. (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nature Reviews Microbiology 13: 677-690
  • 9. Christner B.C., Mosley-Thompson E., Thompson L.G., et al. (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environmental Microbiology 3: 570-577.
  • 10. Clegg J.S. (2001) Cryptobiosis – a peculiar state of biological organization. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 128: 613-624.
  • 11. Chela-Flores J., Seckbach J. (2011) The Dry Valley Lakes, Antarctica: A key to evolutionary biomarkers on Europa and elsewhere. Instruments, Methods, and Missions for Astrobiology XIV. [In:] Proceedings of the SPIE (eds. R.B. Hoover, P.C. Davies, G.V. Levin, A.Y. Rozanov) vol. 8152, pp. 81520R-81520, R8. doi: 10.1117/12.898763
  • 12. Cook J., Edwards A., Bulling A., et al. (2016) Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes. Environmental Microbiology 18: 4674-4686.
  • 13. Cook J., Edwards A., Takeuchi N., Irvine-Fynn T. (2015). Cryoconite. The dark biological secret of the cryosphere. Progress in Physical Geography 40: 1-46.
  • 14. Dabert M., Dastych H., Dabert J. (2015) Molecular data support the dispersal ability of the glacier tardigrade Hypsibius klebelsbergi Mihelčič, 1959 across the environmental barrier (Tardigrada). Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg 17: 233-240.
  • 15. Dastych H., Kraus H.J., Thaler K. (2003) Redescription and notes on the biology of the glacier tardigrade Hypsibius klebelsbergi Mihelcic, 1959 (Tardigrada), based on material from Ötztal Alps, Austria. Mitteilungen aus dem Zoologischen Museum Hamburg 100: 73-100.
  • 16. De Smet W.H., Van Rompu E.A. (1994) Rotifera and Tardigrada from some cryoconite holes on a Spitsbergen (Svalbard) glacier. Belgian Journal of Zoology 124: 27-37.
  • 17. Doran P.T., Lyons W.B., McKnight D.M. (2010) Life in Antarctic Deserts and other Cold Dry Environments.
  • 18. Dudeja S., Bhattacherjee A.B., Chela-Flores J. (2012) Antarctica as model for the possible emergence of life on Europa. Life on Earth and Other Planetary Bodies. COLE Habitats and Astrobiology 24: 407-419.
  • 19. Edwards A., Pachebat J.A., Swain M., et al. (2013) A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environmental Research Letters 8: 1-11.
  • 20. Erdmann W., Kaczmarek Ł. (2016) Tardigrade in space researches- past and future. Origins of Life and Evolution of Biospheres. doi:10.1007/s11084-016-9522-1
  • 21. Feller G., Gerday C. (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nature Reviews Microbiology 1: 200-208.
  • 22. Fishbaugh K. E., Head J. W. (2000) North polar region of Mars: Topography of circumpolar deposits from Mars Orbiter Laser Altimeter (MOLA) data and evidence for asymmetric retreat of the polar cap. Journal of Geophysical Research Atmospheres 105: 22455-22486.
  • 23. Fontaneto D., Bunnefeld N., Westberg M. (2012) Long-Term Survival of Microscopic Animals Under Desiccation Is Not So Long. Astrobiology 12: 863-869.
  • 24. Gaubin Y., Delpoux M., Pianezzi B., et al. (1990) Investigations of the effect of cosmic rays on Artemia cysts and tobacco seeds; results of Exobloc II experiment, flown aboard Biocosmos 1887. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 17: 133-143.
  • 25. Gladyshev E., Meselson M. (2008) Extreme Resistance of Bdelloid Rotifers to Ionizing Radiation. Proceedings of the National Academy of Sciences 105: 5139-5144.
  • 26. Greenberg R. (2005) Europa – The Ocean Moon. Praxis Publishing, UK, XV.
  • 27. Greven H., Dastych H., Kraus H.J. (2005) Notes on the integument of the glacierdwelling tardigrade Hypsibius klebelsbergi Mihelčič, 1959 (Tardigrada). Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg 102: 11-20.
  • 28. Grzesiak J., Górniak D., Świątecki A., et al. (2015) Microbial community development on the surface of Hans and Werenskiold Glaciers (Svalbard, Arctic): a comparison. Extremophiles. 19(5): 885-97.
  • 29. Gokul J.K., Hodson A.J., Saetnan E.R., et al. (2016) Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap. Molecular Ecology 25, 3752-3767.
  • 30. Guidetti R., Rizzo A.M., Altiero T., et al. (2012) What can we learn from the toughest animals of the Earth? Water bears (tardigrades) as multicellular model organisms in order to perform scientific preparations for lunar exploration. Planetary and Space Science 74: 97-102.
  • 31. Hashimoto T., Horikawa D.D., Saito Y., et al. (2016) Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nature Communications, 7: 12808.
  • 32. Head J.W., Marchant D.R (2014) The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system. Antarctic Science 26: 774800.
  • 33. Hodson A., Anesio A.M., Tranter M., et al. (2008) Glacial ecosystems. Ecological Monographs 78: 41-67.
  • 34. Hodson A., Cameron K., Bøggild C., et al. (2010). The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. Journal of Glaciology 56: 349-362.
  • 35. Hodson A., Paterson H., Westwood K., Cameron K., Laybourn-Parry J. (2013). A blue-ice ecosystem on the margins of the East Antarctic ice sheet. Journal of Glaciology, 59: 255-268.
  • 36. Horikawa D.D. (2012) Survival of tardigrades in extreme environments: A model animal for astrobiology. Anoxia. COLE Habitats and Astrobiology 21: 205-217. ISBN: 97894-007-1895-1
  • 37. Horneck G. (2000) The microbial world and the case for Mars. Planetary and Space Science 48: 1053-1063.
  • 38. Hoover R.B., Gilichinsky D. (2001) Significance to Astrobiology of MicroOrganisms in Permafrost and Ice. Permafrost Response on Economic Development, Environmental Security and Natural Resources NATO Science Series 76: 553-579.
  • 39. Hugenholtz P., Goebel B.M., Pace N.R. (1998) Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology 180: 4765-4774.
  • 40. Johnson A.P., Pratt L.M., Vishnivetskaya T., et al. (2011) Extended survival of several organisms and amino acids under simulated martian surface conditions. Icarus 211: 1162-1178.
  • 41. Jönsson K.I. (2007) Tardigrades as a potential model organism in space research. Astrobiology 7: 757-766.
  • 42. Jönsson K.I., Rabbow E., Schill R.O., et al. (2008) Tardigrades survive exposure to space in low Earth orbit. Current Biology 18: 729-731.
  • 43. Kaczmarek Ł., Jakubowska N., CelewiczGołdyn S., et al. (2015) Cryoconite holes microorganisms (algae, Archaea, bacteria, cyanobacteria, fungi, and Protista)- a review. Polar Record 52: 176-203. doi:10.1017/S0032247415000637
  • 44. Karl D.M., Bird D.F., Björkman K., et al. (1999) Microorganisms in the Accreted Ice of Lake Vostok, Antarctica. Science 286: 2144-2147.
  • 45. Krisko A., Leroy M., Radman M., et al. (2011) Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. Proceedings of the National Academy of Sciences 109: 2354-2357.
  • 46. Langford H., Irvine-Fynn T., Edwards A., et al. (2014) A spatial investigation of the environmental controls over cryoconite aggregation on Longyearbreen glacier, Svalbard. Biogeosciences 11: 5365-5380.
  • 47. Lutz S., Anesio A.M., Edwards A., Benning L.G. (2016) Linking microbial diversity and functionality of arctic glacial surface habitats. Environmental Microbiology, doi:10.1111/1462-2920.13494.
  • 48. Łokas E., Zaborska A., Kolicka M., et al. (2016) Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier. Chemosphere 160: 162-172.
  • 49. Marchant D.R., Head J.W (2014) Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus 192: 187-222.
  • 50. Mueller D.R., Vincent W.F., Pollard W.H., et al. (2001) Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwiga, Beiheft 123: 173-197.
  • 51. Persson D., Halberg K.A., Jørgensen A., et al. (2010) Extreme stress tolerance in tardigrades: surviving space conditions in low earth orbit. Journal of Zoological Systematics and Evolutionary Research 49: 90-97.
  • 52. Porazińska D.L., Fountain A.G., Nylen T.H., et al. (2004) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic, Antarctic, and Alpine Research 36: 84-91.
  • 53. Priscu J.C., Adams E.E., Lyons W.B., et al. (1999). Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286: 2141-2144.
  • 54. Rebecchi L., Cesari M., Altiero T., et al. (2009a) Survival and DNA degradation in anhydrobiotic tardigrades. Journal of Experimental Biology 212: 4033-4039.
  • 55. Rebecchi L., Altiero T., Guidetti R., et al. (2009b) Tardigrade resistance to space effects: first results of experiments on the LIFE-TARSE mission on FOTON-M3 (September 2007) Astrobiology 9: 581591.
  • 56. Remias D., Lütz-Meindl U., Lütz C. (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. European Journal of Phycology 40: 259-268.
  • 57. Ricci C. (1998) Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiology 387/388: 321-326. Ricci C. (2001) Dormancy patterns in rotifers. Hydrobiology 446/447: 1-11.
  • 58. Ricci C., Caprioli M. (2005) Anhydrobiosis in bdelloid species, populations and individuals. Integrative and Comparative Biology 45: 759-763.
  • 59. Shain D.H., Halldórsdóttir K., Pálsson F., Aðalgeirsdóttir G., Gunnarsson A., Jónsson Þ., Lang S.A., Pálsson H. S., Steinþórssson S., Arnas E. (2016) Colonization of maritime glacier ice by bdelloid Rotifera. Molecular Phylogenetics and Evolution 98: 280-287.
  • 60. Shain D.H., Carter M.R., Murray K.P., Maleski K.A., Smith N.R., McBride T.R., Michalewicz L.A., Saidel W.M. (2000) Morphologic characterization of the ice worm Mesenchytraeus solifugus. Journal of Morphology 246: 192-197.
  • 61. Sheridan P.P., Miteva V.I., Brenchley J.E. (2003) Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Applied and Environmental Microbiology 69: 2153-2160.
  • 62. Singh P., Singh S.M., Dhakephalkar P. (2014a) Diversity, cold active enzymes and adaptation strategies of bacteria inhabiting glacier cryoconite holes of High Arctic. Extremophiles 18: 229-242.
  • 63. Singh P., Hanada Y., Singh S.M., et al. (2014b) Antifreeze protein activity in Arctic cryoconite bacteria. FEMS Microbiology Letters 351: 14-22.
  • 64. Sotin C., Tobie G. (2004) Internal structure and dynamics of the large icy satellites. Comptes Rendus Physique 5: 769-780.
  • 65. Tanabe Y., Kudoh S., Imura S., Fukuchi M. (2008) Phytoplankton blooms under dim and cold conditions in freshwater lakes of East Antarctica. Polar Biology 31:199-208.
  • 66. Takeuchi N., Kohshima S.S., Seko K. (2001) Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic, Antarctic, and Alpine Research 33: 115-122.
  • 67. Tranter M., Fountain A., Fritsen C., et al. (2004) Extreme hydrological conditions in natural microcosms entombed within Antarctic ice. Hydrological Processes 18: 379-387.
  • 68. Uetake J., Tanaka S., Segawa T., et al. (2016) Microbial community variation in cryoconite granules on Qaanaaq Glacier, NW Greenland. FEMS Microbiology Ecology 92(9): 1-10.
  • 69. Vincent W.F. (2007) Cold Tolerance in Cyanobacteria and Life in the Cryosphere. In J. Seckbach (ed.), Algae and Cyanobacteria in Extreme Environments 287-301. Springer.
  • 70. Vincent W.F., Howard-Williams C. (2000) Life on snowball Earth. Science 287: 2421.
  • 71. Vonnahme T.R., Devetter M., Zárský J.D., et al. (2015) Controls on microalgal community structures in cryoconite holes upon high Arctic glaciers, Svalbard. Biogeosciences 13: 659-674.
  • 72. Wharton R.A., McKay C.P., Simmons G.M., Parker B.C. (1985) Cryoconite holes on glaciers. Bioscience 35: 499-503.
  • 73. Wilson L., Head J.W. (1981) Ascent and eruption of basaltic magma on the Earth and Moon. Journal of Geophysical Research: Solid Earth 86: 2971-3001. DOI: 10.1029/JB086iB04p02971
  • 74. Wright J.C. (2001) Cryptobiosis 300 years on from van Leeuwenhoek: what have we learned about tardigrades? Zoologischer Anzeiger 240: 563-582.
  • 75. Yallop M.L., Anesio A.M., Perkins R.G., et al. (2012) Photophysiology and albedochanging potential of the ice-algal community on the surface of the Greenland ice sheet. ISME Journal 6: 2302-2313.
  • 76. Zawierucha K., Kolicka M., Takeuchi N., et al. (2015) What animals can live in cryoconite holes? A faunal review. Journal of Zoology 295: 159-169.
  • 77. Zawierucha K., Ostrowska M., Vonnahme T.R., et al. (2016a) Diversity and distribution of Tardigrada in Arctic cryoconite holes. Journal of Limnology 75: 545-559.
  • 78. Zawierucha K., Vonnahme T.R., Devetter M., et al. (2016b) Area, depth and elevation of cryoconite holes in the Arctic do not influence Tardigrada densities. Polish Polar Research 37: 325-334.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.