Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper proposes an original design of a mobile lifting device for diagnosing and repairing support nodes of above-ground segments of gas pipelines without stopping gas transportation. When using such a device, the rollers of the lifting chain interact with the surface of the pipe, which can possibly cause additional stresses in the gas pipeline. At the first stage of studying this problem, a model of a typical gas pipeline overhead crossing for the Carpathian region was built and the maximum operating force that should be developed by the mobile lift during repair operations was determined. At the second stage, a finite-element model of the interaction of the mobile lift chain with the main gas pipeline pipe was built. The additional equivalent stresses arising from the contact of the rollers of the lifting chain with the pipe surface were estimated. Recommendations are given to ensure the safe operation of the gas pipeline when using a mobile lift for local lifting of the pipe above the support of above-ground segments of gas pipelines.
Czasopismo
Rocznik
Tom
Strony
art. no. 187159
Opis fizyczny
Bibliogr. 67 poz., rys., wykr.
Twórcy
autor
- Faculty of Civil and Environmental Engineering and Architecture, Bydgoszcz University of Science and Technology, Poland
autor
- Department of Construction and Civil Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, Ukraine
autor
- Department of Technical Mechanics and Dynamics of Machines, Lviv Polytechnic National University, Ukraine
autor
- Department of Engineering and Computer Graphics, Ivano-Frankivsk National Technical University of Oil and Gas, Ukraine
autor
- Department of Construction and Civil Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, Ukraine
Bibliografia
- 1. Akhmetov S, Akhmetov N; Zhanna Iklasova Z, Zaydemova Z. Energy and material saving technologies for construction of main pipelines for oil and gas transportation. E3S Web Conf. 2021; 288: 01051, https://doi.org/10.1051/e3sconf/202128801051.
- 2. Arya AK. A critical review on optimization parameters and techniques for gas pipeline operation profitability. J Petrol Explor Prod Technol 2022; 12: 3033–3057, https://doi.org/10.1007/s13202-022-01490-5.
- 3. Barabash M. Issues of Resistance to Progressive Failure of Load-Bearing Systems in Lira-Sapr Software. Advances in Science and Technology 2022; 114: 17–25, https://doi.org/10.4028/p-5yhq80.
- 4. Barabash MS, Romashkina MA. Lira-Sapr program for generating design models of reconstructed buildings. International Journal for Computational Civil and Structural Engineering 2018; 14(4): 70–80, https://doi.org/10.22337/2587-9618-2018-14-4-70-80.
- 5. Bayrak R, Sagirli A. Effect of different roller end-flange constructions on the fatigue life of the cylindrical roller bearings: A novel flange deformation formula. Eksploatacja i Niezawodność – Maintenance and Reliability. 2023;25(4). doi:10.17531/ein/174296.
- 6. Bazaluk O, Dubei O, Ropyak L, Shovkoplias M, Pryhorovska T, Lozynskyi V. Strategy of Compatible Use of Jet and Plunger Pump with Chrome Parts in Oil Well. Energies 2021; 15(1): 83, http://dx.doi.org/10.3390/en15010083.
- 7. Bedzir AA, Shatskii IP, Shopa VM. Nonideal contact in a composite shell structure with a deformable filler. Int Appl Mech 1995; 31: 351–354, https://doi.org/10.1007/BF00846842
- 8. Bedzir OO, Shopa VM. Contact interaction of a slotted cylindrical shell and a deformable filler with regard for dry friction. J Math Sci 2010; 168: 665–672, https://doi.org/10.1007/s10958-010-0017-8.
- 9. Bembenek M, Mandziy T, Ivasenko I, Berehulyak O, Vorobel R, Slobodyan Z, et al. Multiclass Level-Set Segmentation of Rust and Coating Damages in Images of Metal Structures. Sensors 2022; 22(19): 7600, http://dx.doi.org/10.3390/s22197600.
- 10. Bembenek M, Prysyazhnyuk P, Shihab T, Machnik R, Ivanov O, Ropyak L. Microstructure and Wear Characterization of the Fe-Mo-B-C–Based Hardfacing Alloys Deposited by Flux-Cored Arc Welding. Materials 2022; 15(14): 5074, http://dx.doi.org/10.3390/ma15145074.
- 11. Chen S, Teng K, Zhang K, Wang X, Xia L, Zhang M, et al. Passability and Internode Mechanics Analysis of a Multisection Micro Pipeline Robot. Actuators 2023; 12(4): 137. http://dx.doi.org/10.3390/act12040137
- 12. Chudzik A, Warda B. Fatigue life prediction of a radial cylindrical roller bearing subjected to a combined load using FEM. Eksploatacja i Niezawodność – Maintenance and Reliability. 2020;22(2):212-220. doi:10.17531/ein.2020.2.4.
- 13. Dai L, Wang D., Wang T, Feng Q, Yang X. Analysis and Comparison of Long-Distance Pipeline Failures. J. Pet. Eng. 2017; 2017: 3174636, https://doi.org/10.1155/2017/3174636.
- 14. Ding Y, Yang H, Xu P, Zhang M, Hou Z. Coupling Interaction of Surrounding Soil-Burished Pipeline and Additional Stress in Subidion Soil. Geofluids 2021; 2021: 7941989, https://doi.org/10.1155/2021/7941989
- 15. Dolgov N, Romashin S, Frolenkova L, Shorkin V. A model of contact of elastic bodies with account for their adhesion. Nanomechanics Science and Technology: An International Journal 2015; 6(2):117–133, https://doi.org/10.1615/NanomechanicsSciTechnolIntJ.v6.i2.30
- 16. Doroshenko Y, Kogut G, Rybitskyi I, Tarayevs’kyyO, Pyrig T. Numerical investigation on erosion wear and strength of main gas pipelines bends. Phys. Chem. Sol. State 2021; 22(3): 551–60, https://doi.org/10.15330/pcss.22.3.551-560.
- 17. Du S, Yang Y. Study on the influence of pin shaft clearance on the bearing performance of the hydraulic support. Eksploatacja i Niezawodność – Maintenance and Reliability. 2023;25(4). doi:10.17531/ein/174367.
- 18. Dubei OY, Tutko TF, Ropyak LY, Shovkoplias MV. Development of Analytical Model of Threaded Connection of Tubular Parts of Chrome-Plated Metal Structures. Metallofiz. Noveishie Tekhnol. 2022; 44: 251–272, https://doi.org/10.15407/mfint.44.02.0251.
- 19. Dutkiewicz M, Dalyak T, Shatskyi I, Venhrynyuk T, Velychkovych A. Stress Analysis in Damaged Pipeline with Composite Coating. Applied Sciences 2021;11(22):10676, http://dx.doi.org/10.3390/app112210676.
- 20. Dutkiewicz M, Velychkovych A, Andrusyak A, Petryk I, Kychma A. Analytical Model of Interaction of an Oil Pipeline with a Support of an Overpass Built in a Mountainous Area. Energies 2023;16(11): 4464, http://dx.doi.org/10.3390/en16114464.
- 21. Dutkiewicz M, Velychkovych A, Shatskyi I, Shopa V. Efficient Model of the Interaction of Elastomeric Filler with an Open Shell and a Chrome-Plated Shaft in a Dry Friction Damper. Materials 2022; 15(13): 4671, http://dx.doi.org/10.3390/ma15134671.
- 22. Dutta AK, Mandal JJ, Bandyopadhyay D. Analysis of Beams on Pasternak Foundation Using Quintic Displacement Functions. Geotech Geol Eng 2021; 39: 4213–4224, https://doi.org/10.1007/s10706-021-01752-9.
- 23. Feng Q. Pipeline Failure Cause Theory: A New Accident Characteristics, Quantification, and Cause Theory. Failure Analysis. IntechOpen; 2019. http://dx.doi.org/10.5772/intechopen.80572
- 24. Ghodoosipour B, Stolle J, Nistor I, Mohammadian A, Goseberg N. Experimental Study on Extreme Hydrodynamic Loading on Pipelines Part 2: Induced Force Analysis. Journal of Marine Science and Engineering 2019; 7(8): 262, https://doi.org/10.3390/jmse7080262.
- 25. Gulyayev V, Shlyun N. Influence of friction on buckling of a drill string in the circular channel of a bore hole. Pet. Sci. 2016; 13: 698–711. https://doi.org/10.1007/s12182-016-0122-5
- 26. Hwang W, Lee JS. Analytical Model for the Structural Behavior of Pipelines During Lowering-In. Applied Sciences 2019; 9(13): 2595, https://doi.org/10.3390/app9132595.
- 27. Karamanos S. Structural Mechanics and Design of Metal Pipes. Elsevier: 2023, https://doi.org/10.1016/C2020-0-02505-3
- 28. Karpenko M, Prentkovskis O, Šukevičius Š. Research on high-pressure hose with repairing fitting and influence on energy parameter of the hydraulic drive. Eksploatacja i Niezawodność – Maintenance and Reliability. 2022;24(1):25-32. doi:10.17531/ein.2022.1.4.
- 29. Khalili A, Vosoughi AR. An approach for the Pasternak elastic foundation parameters estimation of beams using simulated frequencies. Inverse Problems in Science and Engineering 2018; 26(8): 1079–1093, https://doi.org/10.1080/17415977.2017.1377707.
- 30. Kim IJ, Jang YC, JangYY. Estimation of tensile strain capacity for thin-walled API X70 pipeline with corrosion defects using the fracture strain criteria. J Mech Sci Technol. 2020; 34: 2801–2812, https://doi.org/10.1007/s12206-020-0613-6.
- 31. Kostikov AO, Palkov SA. Contact deformation of the pipeline sealing unit. J. of Mech. Eng. 2020; 23(4): 52–62, https://doi.org/10.15407/pmach2020.04.052.
- 32. Kryzhanivs’kyi EI, Rudko VP, Shats’kyi IP. Estimation of admissible loads upon a pipeline in the zone of sliding ground. Mater. Sci. 2004; 40: 547–551, https://doi.org/10.1007/s11003-005-0076-z.
- 33. Kuei KC, Ghafghazi M, DeJong JT. Pile-Driving Mechanics at the Base as Informed by Direct Measurements. Journal of Geotechnical and Geoenvironmental Engineering 2017; 143(9): 1746, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001746
- 34. Levchuk KG. Engineering Tools and Technologies of Freeing of the Stuck Metal Drilling String, Metallofiz. Noveishie Tekhnol. 2018; 40(1): 45–137, https://doi.org/10.15407/mfint.40.01.0045.
- 35. Li G, Zhang P, Li Z, Ke Z, Wu G. Safety Length Simulation of Natural Gas Pipeline Subjected to Transverse Landslide. World Journal of Engineering and Technology 2023; 11: 67–80, https://doi.org/10.4236/wjet.2023.111007.
- 36. Liang H, Yue Q, Lim G, Palmer AC. Study on the contact behavior of pipe and rollers in deep S-lay. Applied Ocean Research 2018; 72: 1–11, https://doi.org/10.1016/j.apor.2017.12.007.
- 37. Lu H., Behbahani S., Azimi M., Matthews J, Han S, Iseley T. Trenchless Construction Technologies for Oil and Gas Pipelines: State-of-the-Art Review. Journal of Construction Engineering and Management 2020; 146(6): 1819, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001819.
- 38. Lukács J, Koncsik Z, Chován P. Integrity increasing of damaged transporting pipelines using fiber reinforced polymer composite wrap systems. Engineering Failure Analysis 2022; 137: 106284, https://doi.org/10.1016/j.engfailanal.2022.106284.
- 39. Michnej M, Młynarski S, Pilch R, Sikora W, Smolnik M, Drożyner P. Physical and reliability aspects of high-pressure ammonia water pipeline failures. Eksploatacja i Niezawodność – Maintenance and Reliability. 2022;24(4):728-737. doi:10.17531/ein.2022.4.13.
- 40. Mohamed Azzam M. Failure Analysis of Pipelines in the Oil and Gas Industry. In Pipeline Engineering–Design, Failure, and Management. London, IntechOpen: 2023, https://doi.org/10.5772/intechopen.108140.
- 41. Moisyshyn V, Levchuk K. Investigation on Releasing of a Stuck Drill String by Means of a Mechanical Jar. Oil & Gas Science and Technology 2017; 72: 27–35, https://doi.org/10.2516/ogst/2017024
- 42. Muc A. Axisymmetric Contact Problems for Composite Pressure Vessels. Journal of Composites Science 2022; 6(5):143. https://doi.org/10.3390/jcs6050143
- 43. Nowakowski T, Tubis A, Werbińska-Wojciechowska S. Evolution of Technical Systems Maintenance Approaches – Review and a Case Study. ISPEM 2018. Advances in Intelligent Systems and Computing 2019; 835: 161–174. https://doi.org/10.1007/978-3-319-97490-3_16
- 44. Nowakowski T, Werbińska-Wojciechowska S, Chlebus M. Reliability Assessment of Production Process – Markov Modelling Approach. ISPEM 2017. Advances in Intelligent Systems and Computing 2018; 637: 392–406. https://doi.org/10.1007/978-3-319-64465-3_38
- 45. Nowakowski T. Problems of reliability modelling of multiple-phased systems. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2011; 4: 79-84. https://archive.ein.org.pl/sites/default/files/2011-04-12.pdf
- 46. Orynyak IV, Lokhman IV, Sydor MD. Analysis of the stress-strain state of an air crossing of pipeline in the course of repair. Strength Mater. 2009; 41: 581–591, https://doi.org/10.1007/s11223-009-9149-9.
- 47. Popov VL, Heß M, Willert E. Handbook of Contact Mechanics. Deutschland, Springer-Verlag GmbH: 2018, https://doi.org/10.1007/978-3-662-58709-6.
- 48. Russo A, Sellitto A, Saputo S, Acanfora V, Riccio A. A Numerical–Analytical Approach for the Preliminary Design of Thin-Walled Cylindrical Shell Structures with Elliptical Cut-Outs. Aerospace. 2019; 6(5):52. https://doi.org/10.3390/aerospace6050052.
- 49. Sanchez A, Ojeda M, Gomez H, Bermejo C, Medina V, Escorcia O, Bris J, Morelo A, Maury H, Medina J. Review and Analysis of Repair/Rehabilitation Methods for Natural Gas Pipelines. Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis. Tampa, Florida, USA. November 3–9, 2017; 14: V014T14A012, https://doi.org/10.1115/IMECE2017-71543.
- 50. Shats’kyi IP, Struk AB. Stressed state of pipeline in zones of soil local fracture. Strength Mater. 2009; 41: 548–553, https://doi.org/10.1007/s11223-009-9165-9.
- 51. Shatskii IP, Perepichka VV. Shock-wave propagation in an elastic rod with a viscoplastic external resistance. J. Appl. Mech. Tech. Phys. 2013; 54: 1016–1020, https://doi.org/10.1134/S0021894413060163.
- 52. Shatskyi I, Perepichka V, Vaskovskyi M. Longitudinal waves in an elastic rod caused by sudden damage to the foundation. Theor. Appl. Mech. 2021; 48: 29–37, https://doi.org/10.2298/TAM200615001S.
- 53. Shatskyi I, Perepichka V. Problem of dynamics of an elastic rod with decreasing function of elastic-plastic external resistance. In Dynamical Systems in Applications, Proceedings of the DSTA 2017, Lodz, Poland, 11–14 December 2017; Awrejcewicz J, Ed.; Switzerland, Cham, Springer: 2018; 249: 335–342, https://doi.org/10.1007/978-3-319-96601-4_30.
- 54. Shihab STA, Prysyazhnyuk P, Andrusyshyn R, Lutsak L, Ivanov O, Tsap I. Forming the structure and the properties of electric arc coatings based on high manganese steel alloyed with titanium and niobium carbides. EEJET 2020;1(12 (103): 38–44, Available from: https://journals.uran.ua/eejet/article/view/194164.
- 55. Shihab T, Prysyazhnyuk P, Semyanyk I, Anrusyshyn R, Ivanov O, Troshchuk L. Thermodynamic Approach to the Development and Selection of Hardfacing Materials in Energy Industry. Management Systems in Production Engineering 2020; 28(2): 84–89, https://doi.org/10.2478/mspe-2020-0013.
- 56. Simão M, Mora-Rodriguez J, Ramos H. Design Criteria for Suspended Pipelines Based on Structural Analysis. Water 2016; 8(6): 256, http://dx.doi.org/10.3390/w8060256
- 57. Stolarski T, Nakasone Y, Yoshimoto S. Application of ANSYS to contact between machine elements. Engineering Analysis with ANSYS Software (Second Edition), Butterworth-Heinemann, 2018: 375–509, https://doi.org/10.1016/B978-0-08-102164-4.00007-8.
- 58. Su W, Huang S. Frost Heaving Damage Mechanism of a Buried Natural Gas Pipeline in a River and Creek Region. Materials 2022;15(16): 5795, http://dx.doi.org/10.3390/ma15165795.
- 59. Tchomeni Kouejou BX, Sozinando DF, Anyika Alugongo A. Modeling and Analysis of Drill String–Casing Collision under the Influence of Inviscid Fluid Forces. Applied Sciences 2023; 13(6): 3557, https://doi.org/10.3390/app13063557
- 60. Volovetskyi VB, Doroshenko YV, Kogut GM, Dzhus AP, Rybitskyi IV, Doroshenko JI, Shchyrba OM. Investigation of gas gathering pipelines operation efficiency and selection of improvement methods. Journal of Achievements in Materials and Manufacturing Engineering 2021; 107(2): 59–74, https://doi.org/10.5604/01.3001.0015.3585.
- 61. Vytvytskyi I, Seniushkovych M., Shatskyi I. Calculation of distance between elastic-rigid centralizers of casing. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2017; 5: 28–35.
- 62. Wang Y, Xie M, Su C. Dynamic reliability evaluation of buried corroded pipeline under rockfall impact. Eksploatacja i Niezawodność – Maintenance and Reliability. 2022;24(2):275-288. doi:10.17531/ein.2022.2.9.
- 63. Wang Z, Long M, Li X, Zhang Z. Analysis of Interaction between Interior and Exterior Wall Corrosion Defects. J. Mar. Sci. Eng. 2023; 11: 502, https://doi.org/10.3390/jmse11030502.
- 64. Xu T, Wang L, Zhang P, Zhou Y, Liu K, Feng X, et al. Key Techniques for Rapid Jacking and Laying of Pipelines: A Case Study on ‘Jingshihan’ Gas Pipelines in China. Energies 2022; 15(8): 2918, http://dx.doi.org/10.3390/en15082918.
- 65. Yeo IC, Roh M, Chun DH, Jang SH, Heo JW. Optimal arrangement design of pipeline support by considering safety and production cost. International Journal of Naval Architecture and Ocean Engineering 2023; 15: 100531, https://doi.org/10.1016/j.ijnaoe.2023.100531
- 66. Zahid U, Godio A, Mauro S. An analytical procedure for modelling pipeline-landslide interaction in gas pipelines. Journal of Natural Gas Science and Engineering 2020; 81: 103474, https://doi.org/10.1016/j.jngse.2020.103474.
- 67. Zhu XX, Fu CM, Wang YT, Zhang SM. Experimental research on the contact force of the bi-directional pig in oil and gas pipeline. Petroleum Science 2023; 20(1): 474–481, https://doi.org/10.1016/j.petsci.2022.08.021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68e0b5f8-c595-4062-b248-3cfc322103e4