PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of surface relaxation of rhodochrosite (104) and substitution of Mn by Ca on the electronic structure of rhodochrosite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To explore the difference between the surface and crystal structure of rhodochrosite, relaxation and reconstruction of the rhodochrosite (104) surface are studied by using Density Functional Theory. The calculation results indicated that the C and O atoms with lower reactivity tend to be enriched on the surface, while the Mn atoms with the highest reactivity moved away from the surface. The band gap width decreased from 1.814 eV to 1.614 eV after the formation of the rhodochrosite (104) surface. The electrons on the rhodochrosite (104) surface are more active than crystal. Ca substitution makes the atomic activity on the (104) surface of rhodochrosite more stable. Ca substitution reduces the ability of the surface of rhodochrosite to absorb external electrons, and the surface electrical properties decrease.
Rocznik
Strony
art. no. 145991
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Mining College, Guizhou University, Guiyang 550025, China
autor
  • Guizhou Academy of Sciences, 550001
  • National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas, Guiyang 550025, China
  • Guizhou Key Lab of Comprehensive Utilization of Nonmetallic Mineral Resources, Guiyang 550025, China
autor
  • Mining College, Guizhou University, Guiyang 550025, China
Bibliografia
  • BENTARCURT, Y.L., CALATAYUD, M., KLAPP, J., et al.,. 2018. Periodic density functional theory study of maghemite (001) surface. Structure and electronic properties. Surface Science 677.
  • CHEN, J. 2015. The solide physics of sulphide minerals flotation: Central South University Press: Changsha, China.
  • CHEN, J., XU, Z., CHEN. Y., 2020. Electronic structure and surfaces of sulfide minerals: Density functional theory and applications: Elsevier.(a) (b)
  • CHEN, J.H., CHEN, Y., YU-QIONG, L.I., 2010. Quantum-mechanical study of effect of lattice defects on surface properties and copper activation of sphalerite surface. Transactions of Nonferrous Metals Society of China 20 (006), 1121-1130.
  • GRAF, D.L. 1961. Crystallographic tables for the rhombohedral carbonates.
  • HE, G., LI, K., Li, S., GUO, T., HUANG., C., ZENG, Q., 2020. First-principles calculations of electronic structure of rhodochrosite with impurity. Physicochemical Problems of Mineral Processing 56.
  • KIRCHMEYER, S., REUTER, K., 2005. Scientific importance, properties and growing applications of poly(3,4- ethylenedioxythiophene). J.mater.chem 15 (21), 2077-2088.
  • KOSTER, F. G. 1981. Solid state physics. Science 211 (4479):272-272.
  • LUO, N., WEI, D.Z., SHEN, Y.B., liu, W.G., GAO, S.L., 2018. Effect of calcium ion on the separation of rhodochrosite and calcite. Journal of Materials Research and Technology 7 (1), 96-101.
  • MILMAN, V., REFSON, K., CLARK, S.J., PICKARD, C.J., 2010. Electron and vibrational spectroscopies using dft, plane waves and pseudopotentials: Castep implementation. Journal of Molecular Structure: THEOCHEM 954 (1-3), 22-35.
  • MONKHORST, H.J., PACK., J.D., 1976. Special points for brillouin-zone integrations. Physical review. B, Condensed matter 13 (12), 5188-5192.
  • MORAWSKI, I., KUCHARCZYK, R., NOWICKI, M., 2016. Surface relaxation of pt(1 1 1) and cu/pt(1 1 1) revealed by depes. Applied Surface Science.
  • OLIVEIRA, C.D., DUARTE, H.A., 2010. Disulphide and metal sulphide formation on the reconstructed (0 0 1) surface of chalcopyrite: A dft study. Applied Surface Science 257 (4), 1319-1324.
  • PARKER, J.S., DOHERTY B., TAYLOR, K.T., SCHULTZ, K.D., BLAGA, C.I., DIMAURO, L.F., 2006. High-energy cutoff in the spectrum of strong-field nonsequential double ionization. Physical Review Letters 96 (13), 133001.
  • PFROMMER, B.G., COTE, M., LOUIE, S.G., COHEN, M.L., 1997. Relaxation of crystals with the quasi-newton method. Journal of Computational Physics 131 (1), 233-240.
  • RAHIMI, S., M. IRANNAJAD, MEHDILO., A., 2017. Comparative studies of two cationic collectors in the flotation of pyrolusite and calcite. International Journal of Mineral Processing 167, 103-112.
  • SARVARAMINI, A., LARACHI, F., 2017. Understanding the interactions of thiophosphorus collectors with chalcopyrite through dft simulation. Computational Materials Science 132, 137-145.
  • VANDERBILT, DAVID. 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B Condensed Matter 41 (11), 7892.
  • WEN, S.M., DENG, J.S., XIAN, Y.J., DAN, L., 2013. Theory analysis and vestigial information of surface relaxation of natural chalcopyrite mineral crystal. Transactions of Nonferrous Metals Society of China 23 (3), 796–803.
  • YANAI, T., TEW, D.P. HANDY, N.C., 2004. A new hybrid exchange-correlation functional using the coulomb-attenuating method (cam-b3lyp). Chemical Physics Letters 393 (1-3, :51-57.
  • ZHANG, W., CHENG, C.Y., 2007. Manganese metallurgy review. Part i: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide. Hydrometallurgy 89 (3-4), 137-159.
  • ZHOU, F., YAN, C., WANG, H., SUN, Q., WANG, Q., ALSHAMERI, A., 2015. Flotation behavior of four c18 hydroxamic acids as collectors of rhodochrosite. Minerals Engineering 78, 15-20.
  • ZHU, G., CAO, Y. WANG, Y., WANG, X., MILLER, J.D., LU, D., ZHENG, X., 2020. Surface chemistry features of spodumene with isomorphous substitution. Minerals Engineering 146, 106139.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68dd12e4-30e8-4122-be8e-d15f3b9897db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.