PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of synthetic aperture radar interferometry to monitor surface deformations of the Trans-European Transport Network (TEN-T) - a case study of the motorways crossing areas of mining operations in the Upper Silesian coal basin, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Underground hard coal mining causes surface deformations. When the mining operations are conducted beneath linear objects, such as motorways, there is a risk of deformations of the axis of the road and its horizontal and vertical alignment (additional bends and vertical curvatures, longitudinal inclinations, deformations of cross-sections). In the areas subjected to mining operations, mining plants conduct geodetic monitoring. Due to their labour intensity and costs, geodetic measurements are usually made only a few times a year. The article discusses the possibility of applying Interferometric Synthetic Aperture Radar (InSAR) to monitor the subsidence of the vertical alignment of motorways caused by mining operations and its advantages and disadvantages compared to the currently used methods of geodetic measurements. The tests were conducted in two sections of motorways within the Upper Silesian Coal Basin (Poland) in the areas of intensive hard coal mining operations. Radar imaging of the surface made by the European Space Agency's (ESA) satellite Sentinel-1 equipped with the Synthetic Aperture Radar (SAR) was used.
Rocznik
Strony
136--143
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
  • Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
  • Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
Bibliografia
  • [1] Rompalski P, Smoliński A, Krztoń H, Gazdowicz J, Howaniec N, Róg L. Determination of mercury content in hard coal and fly ash using X-ray diffraction and scanning electron microscopy coupled with chemical analysis. Arab J Chem 2016;12(8):3927-42.
  • [2] Checko J, Urych T, Magdziarczyk M, Smolinski A. Resource assessment and numerical modeling of CBM extraction in the upper silesian Coal Basin, Poland. Energies 2020;13(9): 2153. https://doi.org/10.3390/en13092153.
  • [3] Koteras A, Chećko J, Urych T, Magdziarczyk M, Smolinski A. An assessment of the formations and structures suitable for safe CO2 geological storage in the upper silesia Coal Basin in Poland in the context of the regulation relating to the CCS. Energies 2020;13(1):195. https://doi.org/10.3390/en130101952020.
  • [4] Smolinski A, Rompalski P, Cybulski K, Chećko J, Howaniec N. Chemometric study of trace elements in hard coals of the Upper Silesian Coal Basin, Poland. Sci World J 2014. https://doi.org/10.1155/2014/234204. Article ID 234204.
  • [5] Sobolev V, Bilan N, Dychkovskyi R, Caseres Cabana E, Smoliński A. Reasons for breaking of chemical bonds of gas molecules during movement of explosion products in cracks formed in rock mass. Int J Min Sci Technol 2020;30(2):265-9.
  • [6] Dudzińska A, Howaniec N, Smoliński A. Effect of coal grain size on sorption capacity with respect to propylene and acetylene. Energies 2017;10(1919). https://doi.org/10.3390/en10111919.
  • [7] Pielok J. Study on deformation of the ground surface and rock mass caused by mining exploitation. Kraków: Wydawnictwo Akademii Górniczo-Hutnicze; 2002.
  • [8] Nita J, Myga-Piatek U. Scenic values of the katowice-czestochowa section of national road no. 1. Geogr Pol 2014;87(1): 113-25.
  • [9] Macioszek E, Sierpinski G, Celinski I, Krawiec S. The analysis of travellers behaviour in the upper silesian conurbation. Arch Transport 2012;24(4):441-61.
  • [10] Goldmann K, Wessel J. TEN-T corridors - stairway to heaven or highway to hell? Transport Res Pol Pract 2020;137:240-58.
  • [11] Jourquin B, Beuthe M. Cost, transit time and speed elasticity calculations for the European continental freight transport. Transport Pol 2019;83:1-12.
  • [12] Ntzeremes P, Kirytopoulos K, Benekos I. Exploring the effect of national policies on the safety level of tunnels that belong to the trans-European road network: a comparative analysis. Int J Crit Infrastruct 2018;14(1):40-58.
  • [13] Xia Z, Yao Q, Meng G, Wang W, Shen Q. Numerical study of stability of mining roadways with 6.0-m section coal pillars under influence of repeated mining. Int J Rock Mech Min Sci 2021;138:104641.
  • [14] Shi J, Feng J, Peng R, Zhu Q. Analysis of deformation damage in deep well roadway and supporting countermeasures. Geotech Geol Eng 2020;38(6):6899-908.
  • [15] Sun Y, Li G, Zhang J, Xu J. Failure mechanisms of rheological coal roadway. Sustainability 2020;12(7):2885.
  • [16] Xue G, Gu C, Fang X, Wei T. A case study on large deformation failure mechanism and control techniques for soft rock roadways in tectonic stress areas. Sustainability 2019; 11(13):3510.
  • [17] Wang Q, Wang B. Combined support technology of retained entry in large mining height face with double roadways layout. Geotech Geol Eng 2020;38(5):4661-74.
  • [18] Massonnet D, Feigl K. Radar interferometry and its application to changes in the Earth's surface. Rev Geophys 1998; 36(4):441-500.
  • [19] Pepe A, Calo F. A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth's Surface displacements. Appl Sci 2017;7(12):1264.
  • [20] Strozzi T, Teatini P, Tosi L. TerraSAR-X reveals the impact of the mobile barrier works on Venice coastland stability. Remote Sens Environ 2009;113(12):2682-8.
  • [21] Bamler R, Hartl P. Synthetic aperture radar interferometry. Inverse Probl 1998;1:1-54.
  • [22] Moon WM, Won JS. Polarimetric Synthetic Aperture Radar (SAR) and geodynamic applications: an overview of a new Earth system observation concept. Geosci J 2002;6(4):341-6.
  • [23] Hanssen R. Satellite radar interferometry for deformation monitoring: a priori assessment of feasibility and accuracy. Int J Appl Earth Obs Geoinf 2005;6:253-60.
  • [24] Pappalardo G, Mineo S, Angrisani AC, Di Martire D, Calcaterra D. Combining field data with infrared thermography and DInSAR surveys to evaluate the activity of landslides: the case study of Randazzo Landslide (NE Sicily). Landslides 2018;15(11):2173-93.
  • [25] Xing X, Zhu J, Wang C, Yi H. A new method for CR point identification and it's application to highway deformation monitoring. In: Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University. 36; 2011. p. 699-703 (6).
  • [26] Zhang H, Liu Z, Cheng S, Lu G. ERS differential SAR interferometry for urban subsidence monitoring of Suzhou, Eastern China Wang. Int Geosci Remote Sens Symp (IGARSS) 2001;7:3249-51.
  • [27] Ghiglia DC, Pritt M. Two-dimensional phase unwrapping: theory, algorithms, and software. Computer Sci 1998.
  • [28] Berardino PA. New algorithm for surface deformation monitoring based on Small baseline differential SAR interferograms. IEEE Trans Geosci Rem Sens 2002;40(11): 126-9.
  • [29] Malenovsky Z. Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens Environ 2012;120:91-101.
  • [30] D'Aranno P, Di Benedetto A, Fiani M, Marsella M. Remote sensing technologies for linear infrastructure monitoring. ISPRS Ann Photogram Rem Sens Spatial Inf Sci 2019;42(2/W11):461-8.
  • [31] Sousa J. Potential of C-band SAR interferometry for dam monitoring. Procedia Comput Sci 2016;100:1103-14.
  • [32] Rosen P. Synthetic aperture radar interferometry. Proc IEEE 2000;88(3):112-21.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68dc040f-87ea-4551-ae9c-0e0976e37d09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.