PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ventilation of tunnels during drilling using a forcing ventilation system - a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In Poland, more and more tunnels are being built using mining methods. Mostly ventilation systems are described for tunnels already commissioned. There are few examples of ventilation calculations for tunnels under construction. The paper shows a case study where calculations were made of the minimum air volume flow required to ventilate a tunnel during its tunnelling using four duct ventilation systems. The first system used two separate fans with a 1200 mm diameter duct line, the second system changed the diameter of the duct line to 1400 mm, the third system used one fan with two 1200 mm diameter duct lines connected in parallel, and the fourth system increased the diameter of the duct line to 1400 mm. Fan power requirements were determined for these layouts. The cost statement shows that it is advantageous to change the diameter of the duct line to a larger one - reducing the total cost by about 10%. With the assumed electricity prices, the more favourable variants are the systems for which two fans with separate duct lines are provided - a cost difference of about 5%.
Rocznik
Strony
308--315
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
  • Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, Poland
  • Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, Poland
Bibliografia
  • [1] https://pl.wikipedia.org/wiki/Tunele_w_Polsce#. [Accessed 15 September 2022].
  • [2] Siwowski T. Polskie tunele drogowe: przegląd konstrukcji i technologii budowy. Drogownictwo 2022;7-8:204-12.
  • [3] Internetowy System Aktów Prawnych (ISAP). Ustawa z dnia 9 czerwca 2011 r. Prawo geologiczne i górnicze (Dz. U. 2023, poz. 633). Retrieved from: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20111630981/U/D20110981Lj.pdf. [Accessed 15 May 2023].
  • [4] Internetowy System Aktów Prawnych (ISAP). Rozporządzenie Ministra Energii z dnia 23 listopada 2016 r. w sprawie szczegółowych wymagań dotyczących prowadzenia ruchu podziemnych zakładów górniczych (Dz. U. 2017, poz. 1118, z dnia 09.06.2017 r.). Retrieved from: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001118. [Accessed 15 September 2022].
  • [5] Nawrat S, Napieraj S, Schmidt N. Wentylacja tuneli komunikacyjnych podczas ich drążenia. Budownictwo Górnicze i Tunelowe 2012;2:55-61.
  • [6] Nawrat S, Napieraj S. Wentylacja i bezpieczeństwo w tunelach komunikacyjnych. Kraków: AGH Uczelniane Wydawnictwa Naukowo - Dydaktyczne; 2005.
  • [7] Obracaj D. Projektowanie wentylacji lutniowej przy drążeniu chodników kombajnem w kopalniach rud miedzi. Cuprum 2017;3:13-30.
  • [8] Nawrat S, Schmidt N, Napieraj S. Modelowanie komputerowe do oceny zagrożenia pożarowego i bezpieczeństwa w tunelach komunikacyjnych. Budownictwo Górnicze i Tunelowe 2012;2:45-54.
  • [9] Internetowy System Aktów Prawnych (ISAP). Rozporządzenie Ministra Rodziny, Pracy i Polityki Społecznej z dnia 12 czerwca 2018 r. w sprawie najwyższych dopuszczalnych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy (Dz. U. 2018, poz. 1286, z dnia 03.07.2018 r.). Retrieved from: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001052. [Accessed 15 September 2022].
  • [10] Suarez J, Bringiotti M, Amado AB. New Technologies applied to the design and optimization of tunnel ventilation systems. Budownictwo Górnicze i Tunelowe 2012;2:28-36.
  • [11] Xiaoke Ch, Chai J, Jipeng L, Yuan Q, Xu Z, Jing C. Tunnel ventilation during construction and diffusion of hazardous gases studied by numerical simulations. Build Environ 2020; 177:106902. https://doi.org/10.1016/j.buildenv.2020.106902.
  • [12] Xiaojiao C, Wen N, Shuai Y, Qiang L, Yun H, Lidian G, et al. An assessment of the dust suppression performance of a hybrid ventilation system during the tunnel excavation process: numerical simulation. Process Saf Environ Protect 2021;152:304-17. https://doi.org/10.1016/j.psep.2021.06.007.
  • [13] Widiatmojo A, Sasaki K, Sugai Y, Suzuki Y, Tanaka H, Uchida K, et al. Assessment of air dispersion characteristic in underground mine ventilation: field measurement and numerical evaluation. Process Saf Environ Protect 2015;93: 173-81. https://doi.org/10.1016/j.psep.2014.04.001.
  • [14] Xie Z, Zhao Z, Li D, Jiang T, Wang T, Xiao Y. Field measurements on the attenuation characteristics of PM2.5 and toxic gases in a blasting metro tunnel and evaluation of the re-entry time. Tunn Undergr Space Technol 2023;138:105170. https://doi.org/10.1016/j.tust.2023.105170.
  • [15] Li C, Jiang Z, Zhang G, Feng X, Zeng F. Dust pollution during shotcrete process in high-altitude tunnel based on numerical simulation. Particuology 2023;75:82-95. https://doi.org/10.1016/j.partic.2022.05.012.
  • [16] Liu N, Chen K, Deng E, Yang W, Wang Y. Study on dust suppression performance of a new spray device during drilling and blasting construction in the metro tunnel. Tunn Undergr Space Technol 2023;133:104975. https://doi.org/10.1016/j.tust.2022.104975.
  • [17] Xie Z, Xiao Y, Zhao Q, Lin J. Transient analysis of dust exposure under different supply airflow angle in a blasting tunnel based on CFD. Energy Rep 2022;8(10):45-52. https://doi.org/10.1016/j.egyr.2022.05.111.
  • [18] Bystron H. Methods of calculating unbranched mine ventilation ducts [Metody obliczania nierozgałęzionych lutniociągów kopalnianych]. Arch Min Sci 1990;34:3.
  • [19] Fang Y, Yao Z, Lei S. Air flow and gas dispersion in the forced ventilation of a road tunnel during construction. Undergr Space 2019;4:168-79.
  • [20] Hua Y, Nie W, Wei W, Liu Q, Liu Y, Peng H. Research on multi-radial swirling flow for optimal control of dust dispersion and pollution at a fully mechanized tunnelling face. Tunn Undergr Space Technol 2018;79:293-303.
  • [21] Hua Y, Nie W, Liu Q, Peng H, Wei W, Cai P. The development and application of a novel multi-radial-vortex-based ventilation system for dust removal in a fully mechanized tunnelling face. Tunn Undergr Space Technol 2020;98: 103253.
  • [22] Obracaj D, Korzec M, Deszcz P. Study on methane distribution in the face zone of the fully mechanized roadway with overlap auxiliary ventilation system. Energies 2021;14:6379. https://doi.org/10.3390/en14196379.
  • [23] Pawinski J, Roszkowski J, Strzeminski J. Przewietrzanie kopaln. Wydawnictwo Śląsk; 1995.
  • [24] Ren T, Wang Z, Coope G. CFD modelling of ventilation and dust flow behaviour above an underground bin and the design of an innovative dust mitigation system. Tunn Undergr Space Technol 2014;41:241-54.
  • [25] Shi G, Liu M, Guo Z, Hu F, Wang D. 2017. Unsteady simulation for optimal arrangement of dedusting airduct in coal mine heading face. J Loss Prev Process Ind 2017;46:45-53.
  • [26] Szlązak N, Obracaj D, Borowski M. Systemy przewietrzania Ślepych wyrobisk ślepych w kopalniach węgla kamiennego. Przeglad Gorn 2003;7-8:13-9.
  • [27] Knechtel J. Selection of air-duct ventilation system as a means to reduce ventilation costs of the driven workings. Przeglad Gorn 2015;5:44-53.
  • [28] Kocsis Ch, Hardcastle S. Ventilation system operating cost comparison between a conventional and an automated underground metal mine. Min Eng 2003;55:57-64.
  • [29] Gonen A. Energy savings in auxiliary ventilation systems of underground mines. Int J Eng Technol Manag Res 2021;8(10): 72-82. https://doi.org/10.29121/ijetmr.v8.i10.2021.1055.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68d81582-8002-4267-83f9-077b7574a869
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.