PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rainwater Management Solutions and their Impact on Shaping Inner City Areas Undergoing Transformation (Case Study of the ZAC Clichy-Batignolles Area in Paris)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Proper management of rainwater in cities has a significant impact on improving the environmental conditions: the microclimate of a city by regulating the water cycle and reducing heat islands; developing of biodiversity; increasing health and well-being of residents. The aim of the article was to present the possibilities of improving the environmental conditions in compact urban development areas – those that additionally contribute to the shaping of architecture, and thus combine the ecological, functional, and aesthetic benefits. The article draws attention to the synergy of climate change and the new way of developing urban areas, which was presented on the example of specific solutions functioning on the transformed urban area: Clichy-Batignolles in central Paris – recognized as a model for environmental solutions, labelled Éco-Quartier. The mentioned conditions and solutions were related to the possibility of shaping urban form, with the obligation to discharge some or all of the rainwater on the building plot. On the basis of the calculations made for the runoff ratio in individual quarters, it was found that it is possible to maintain a compact urban structure and effectively manage rain water provided that appropriate engineering and urban solutions are applied. These solutions can have an architectural value. The conclusions from the analyses can be used to formulate guidelines for other European cities, which are increasingly faced with the problem of water scarcity and uncontrolled flooding.
Rocznik
Strony
209--219
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Department of Landscape Architecture, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
Bibliografia
  • 1. Anderson J. 2003. The environmental benefits of water recycling and reuse, Water Spply, Vol. 3., No 4., 1–10. [Access 2.06.2019]. Available at: https://doi.org/10.2166/ws.2003.0041.
  • 2. Arrêté du 21 juillet 2015 relatif aux systèmes d’assainissement collectif et aux installations d’assainissement non collectif, à l’exception des installations d’assainissement non collectif recevant une charge brute de pollution organique inférieure ou égale à 1,2 kg/j de DBO5. [Access 2.06.2019]. Available at: www.legifrance.gouv.fr/eli/arrete/2015/7/21/DEVL1429608A/jo/texte.
  • 3. Atelier Jacqueline Osty & associés. 2019. [Access 2.06.2019]. Available at: http://www.osty.fr/
  • 4. Belmeziti A., Cherqui F., Tourne A., Granger D., Werey C., Le Gauffre P. & Chocat B. 2015. Transitioning to sustainable urban water management systems: how to define expected service functions?, Civil Engineering and Environmental Systems, 32:4, 316– 334, DOI: 10.1080/10286608.2015.1047355
  • 5. Breheny M.J. 1995. The Compact City and Transport Energy Consumption. Transactions of the Institute of British Geographers, New Series, No. 20(1), 81–101.
  • 6. Burszta-Adamiak E., Łomotowski J., Wiercik P. 2014. Zielone dachy jako rozwiązaniami poprawiające gospodarkę wodami opadowymi w miastach [Green roofs as solutions to improve rainwater management in cities]. Inżynieria ekologiczna, Vol. 39. 26–32, DOI: 10.12912/2081139X.47.
  • 7. Campisano A., Butler D., Ward S., Burns M.J., Friedler E., DeBusk K., Fisher-Jeffes L.N., Ghisi E., Rahman A., Furumai H., Han M. 2017. Urban rainwater harvesting systems: research, implementation and future perspectives. Water Research, Vol. 115, 195–209.
  • 8. Carter J.G. 2011. Climate change adaptaion in European cities. Current Opinion in Environmental Sustainbility, Vol 3. issue 3., 193–198.
  • 9. Chen Y., Samuelson H.W., Tong Z. 2016. Integrated design workflow and a new tool for urban rainwater management. Journal of Environmental Management, Vol. 180,. 45–51. [Access 2.06.2019]. Available at: https://doi.org/10.1016/j.jenvman.2016.04.059.
  • 10. Chocat, B., Ashley R., Marsalek J., Matos M.-R., Rauch W., Schilling W., and Urbonas B. 2007. Toward Sustainable Management of Urban Storm Water. Indoor Built Environment 16 (3), 273–285.
  • 11. Conticelli E. 2019. Compact City as a Model Achieving Sustainable Development. In: Leal Filho W., Azul A., Brandli L., Özuyar P., Wall T. (eds) Sustainable Cities and Communities. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham, 1–10.
  • 12. Eckert R., Huynh L.H.C. 2016. Climate Responsive Neighbourhoods for HCMC: Compact City vs. Urban Landscape. In: Katzschner A., Waibel M., Schwede D., Katzschner L., Schmidt M., Storch H. (eds) Sustainable Ho Chi Minh City: Climate Policies for Emerging Mega Cities. Springer,
  • 13. European Commission. 1994. Charter of European Cities & Towns Towards Sustainability, European Conference on Sustainable Cities & Towns in Aalborg, Aalborg.
  • 14. European Commission. 2007. Leipzig Charter on Sustainable European Cities. Leipzig.
  • 15. European Commission – Directorate General for Regional Policy. 2011. Cities of tomorrow – Challenges, visions, ways forward. Luxembourg.
  • 16. Fletcher T. D., Shuster W., Hunt W. F., Ashley R., Butler D., Arthur S., ... Viklander M. 2015. SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water Journal, Vol. 12(7), 525–542. [Access 2.06.2019]. Available at: https://doi.org/10.1080/1573062x.2014.916314.
  • 17. Getnet K., MacAlister Ch. 2012. Integrated innovations and recommendation domains: Paradigm for developing, scaling-out, and targeting rainwater management innovations, Ecological Economics, Vol. 76, 34–41. [Access 2.08.2019]. Available at: https://doi.org/10.1016/j.ecolecon.2012.02.003.
  • 18. Giridharan R., Emmanuel R., 2018, The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: A review., Sustainalble cities and society, Volume 40, July 2018, 677–687.
  • 19. Gordon P. & Richardson H.W. 1997. Are Compact Cities a Desirable Planning Goal?, Journal of the American Planning Association, 63:1, 95– 106, DOI: 10.1080/01944369708975727
  • 20. Hellstörm D., Jeppsson U., Kärrman E. 2000. A framework for systems analysis of sustainable urban water management. Environmental Impact Assesment Review, Vol. 20, Iss. 3. 311–321.
  • 21. Leopold L.B. 1968. Hydrology for Urban Land Planning – A Guidebook on the Hydrologic Effects of Urban Land Use. In: Geological Survey Circular 554; U.S. Geological Survey: Washington, DC, USA. [Access 2.06.2019]. Available at: https://pubs.usgs.gov/circ/1968/0554/report.pdf.
  • 22. Mairie de Paris, Paris Batignolles Aménagement. 2015. L’éco-quartier. Une référence de développement urbain durable à Paris. Paris.
  • 23. Mairie de Paris. 2016. Zonage d’assainissement de la Ville de Paris. Projet soumis à enquête publique. Annexes au règlement. Paris
  • 24. Mairie de Paris. 2018a. Carte du Zonage Pluvial. Paris.
  • 25. Mairie de Paris. 2018b. Zonage d‘assainissement de la ville de Paris – Règlement. Paris.
  • 26. Markowič G., Zeleňáková M., Káposztásová D., Hudáková G. 2014. Rainwater infiltration in the urban areas. WIT Transactions on Ecology and The Environment, Vol. 181, 313–320. DOI: 10.2495/EID140271
  • 27. MeteoFrance. 2019. Météo et climat, [Access 2.06.2019]. Available at: http://www.meteofrance.com/climat/france/paris/75114001/normales.
  • 28. Oke T. R. 1982. The energetic basis of the urban heat island, Quarterly Journal of the Royal Meteorological Society, 108, 1–24. [Access 2.06.2019]. Available at: http://dx.doi.org/10.1002/qj.49710845502.
  • 29. Oke T. R., Mills G., Christen A., Voogt J.A. 2017. Urban Climates, Cambridge University Press. pp. 519.
  • 30. Skwarzyńska A., Jóźwiakowski K. et. al. 2014. Jakość wód opadowych i ocena możliwości ich wykorzystania w indywidualnych gospodarstwach domowych [The quality of rainwater and evaluation of its use in individual households]. Technologia wody, Vol. 38, 20–23.
  • 31. Słyś D. 2013. Zrównoważone systemy odwodnienia miast [Sustainable urban drainage systems], Dolnośląskie Wydawnictwo Edukacyjne, 280p.
  • 32. Stewart R., Hytiris N. 2008. The Role of Sustainable Urban Drainage Systems in Reducing the Flood Risk Associated with Infrastructure. 11th International Conference on Urban Drainage (11ICUD), 1–15.
  • 33. Wong, T., R. Brown. 2008. Transitioning to Water Sensitive Cities: Ensuring Resilience through a New Hygrosocial Contract. In: 11th International Conference on Urban Drainage, edited by R. Ashley and A. J. Saul. Edinburgh. September, 10p.
  • 34. Zhang D., Gersberg R.M., Wilhelm Ch., Voigt M. 2009. Decentralized water management: rainwater harvesting and greywater reuse in an urban area of Beijing, China. Urban Water Journal, 6:5, 375–385. DOI: 10.1080/15730620902934827.
  • 35. Zhou Q. 2014. A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts, Water, Vol. 6, 976–992. DOI:10.3390/w6040976.
  • 36. Zimny H. 2006. Ekologia miasta [Urban Ecology]. Dział Wydawnictw PAN. Kraków, 233 p.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68d1dd1e-c531-43b7-a66f-13daba5e56a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.