PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recognition of Weave Patterns of Striped Fabrics Using Optical Coherence Tomography

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Rozpoznawanie wzorów splotów tkanin w paski przy użyciu optycznej tomografii koherencyjnej
Języki publikacji
EN
Abstrakty
EN
The recognition of woven fabric repeat by conventional techniques is labour intensive. In general, woven fabric repeat identification is accomplished automatically by employing complex algorithms and techniques. These algorithms may, however, occasionally fail, especially when dealing with high complexity texture patterns, structures, figures and colours. Optical coherence tomography (OCT) has the capability of taking high resolution images via contactless measurements. In this paper we apply the spectral domain optical coherence tomography imaging technique for identifying striped woven fabric repeat automatically. OCT scans corresponding to four different fabrics, from which the weave matrixes were recognised, are reported in this study. Automatic identification of weave patterns of striped fabrics was accomplished non-destructively by employing optical coherence tomography.
PL
Rozpoznanie powtórzenia tkaniny za pomocą konwencjonalnych technik jest pracochłonne. Ogólnie rzecz biorąc, identyfikacja powtórzenia tkaniny jest przeprowadzana automatycznie przez zastosowanie złożonych algorytmów i technik. Algorytmy te mogą jednak czasami zawieść, szczególnie w przypadku bardzo złożonych wzorów tekstur, struktur, figur i kolorów. Optyczna tomografia koherencyjna (OCT) ma zdolność wykonywania zdjęć o wysokiej rozdzielczości za pomocą pomiarów bezstykowych. W artykule zastosowano technikę obrazowania optycznego tomografii koherencji spektralnej do automatycznego rozpoznawania powtórzeń tkanin w paski. W badaniu przedstawiono skany OCT odpowiadające czterem różnym materiałom, z których rozpoznano matryce splotu. Automatyczna identyfikacja wzorów splotów tkanin w paski została przeprowadzona w sposób niedestrukcyjny dzięki zastosowaniu optycznej tomografii koherencyjnej.
Rocznik
Strony
98--103
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Dokuz Eylül University, Electrical and Electronic Engineering Department, İzmir, Turkey
autor
  • Dokuz Eylül University, Textile Engineering Department, İzmir, Turkey
Bibliografia
  • 1. Başer G. Factors affecting quality in weaving and weaving process control techniques applied. Lecture Notes. İzmir: Dokuz Eylül University, Department of Textile Engineering; 2007.
  • 2. Xu ZK, Deng ZM, Zhao Y and Chen, LT. Research actuality on automatic measure method of fabric density. Progress in Textile Science and Technology 2005; (6): 3–5.
  • 3. Zhang J, Xin B, Wu X. A review of fabric identification based on image analysis technology. Textiles and Light Industrial Science and Technology 2013; (3): 120–130.
  • 4. Lachkar A, Gadi T, Benslimane R, D'Orazio L, Martuscelli E. Textile woven-fabric recognition by using fourier image-analysis techniques: Part I: a fully automatic approach for crossed-points detection. The Journal of the Textile Institute 2003; (3-4): 194–201.
  • 5. Lachkar A, Benslimane R, D'Orazio L, Martuscelli E. Textile woven fabric recognition using Fourier image analysis techniques: Part II – Texture analysis for crossed-states detection. The Journal of the Textile Institute 2005; (3): 179–183.
  • 6. Shady E, Qashqary K, Hassan M, Militky J, Image Processing Based Method Evaluating Fabric Structure Characteristics. FIBRES & TEXTILES in Eastern Europe 2012; 20, 6A(95): 86–90.
  • 7. Liqing L, Jia T, Chen X. Automatic recognition of fabric structures based on digital image decomposition. Indian Journal of Fiber & Textile Research 2008; 33: 388–391.
  • 8. Ajallouian F, Tavanai H, Palhang M, Hosseini SA, Sadri S, Matin K. A novel method for the identification of weave repeat through image processing. The Journal of the Textile Institute 2009; (3): 195–206.
  • 9. Pan R, Gao W, Liu J, Wang H. Automatic recognition of woven fabric pattern based on image processing and BP neural network. The Journal of the Textile Institute 2011; (1): 19–30.
  • 10. Salem YB, Nasri S. Automatic recognition of woven fabrics based on texture and using SVM. Signal, Image and Video Processing 2010; (4): 429–434.
  • 11. Shen J, Zou X, Xu F, Xian Z. Intelligent recognition of fabric weave patterns using texture orientation features. In: Communications in Computer and Information Science 2010; 106: Proceedings of Information Computing and Applications International Conference Part II (ed. R Zhu, Y Zhang, B Liu, C Liu); 2010 Oct 15– 18; Tangshan, China. Berlin: Springer; 2010. p. 8–15.
  • 12. Potiyaraj P, Subhakalin C, Sawangharsub B, Udomkichdecha W. Recognition and re-visualization of woven fabric structures. International Journal of Clothing Science and Technology 2010; (2-3): 79–87.
  • 13. Xiao Z, Nie X, Zhang F, Geng L. Recognition for woven fabric pattern based on gradient histogram. The Journal of the Textile Institute 2014; (7): 744–752.
  • 14. Zheng D. A new method for the detection and classification of weave pattern repeat. Textile Research Journal 2014; (15): 1586–1599.
  • 15. Rief S, Glatt E, Laourine E, Aibibu D, Cherif C, Wiegmann A. Modeling and cfd-simulation of woven textiles to determine permeability and retention properties. AUTEX Research Journal 2011; (3): 78–83.
  • 16. Jiraskova P, Mouckova E. New method for the evaluation of woven fabric unevenness. AUTEX Research Journal 2010; (2): 49–54.
  • 17. Sabuncu M, Akdoğan M. Utilizing Optical Coherence Tomography in the Nondestructive and Noncontact Measurement of Egg Shell Thickness. The Scientific World Journal 2014; (51): 91–95.
  • 18. Sabuncu M, Akdoğan M. Photonic Imaging with Optical Coherence Tomography for Quality Monitoring in the Poultry Industry: a Preliminary Study. Revista Brasileira de Ciência Avícola 2015; (3): 319–324.
  • 19. Dunkers JP, Parnasa RS, Zimbaa CG, Petersona RC, Flynna KM, Fujimotob JG, Bouma BE. Optical coherence tomography of glass reinforced polymer composites. Composites: Part A 1999; 30: 139–145.
  • 20. Dunkers JP, Phelan FR, Sanders DP, Everett MJ, Green WH, Hunston DL, Parnas RS. The application of optical coherence tomography to problems in polymer matrix composites. Optics and Lasers in Engineering 2001; 35: 135–147.
  • 21. Dunkers JP, Sanders DP, Hunston DL, Everett MJ, Green WH. Comparison of optical coherence tomography, x-ray computed tomography, and confocal microscopy results from an impact damaged epoxy/eglass composite. The Journal of Adhesion 2002; (2): 129–154.
  • 22. Wiesauer K, Pircher M, Götzinger E, Hitzenberger CK, Oster R, Stifter D. Investigation of glass–fibre reinforced polymers by polarisation-sensitive, ultra-high resolution optical coherence tomography: Internal structures, defects and stress. Composites Science and Technology 2007; 67: 3051–3058.
  • 23. Stifter D, Wiesauer K, Wurm M, Schlotthauer E, Kastner J, Pircher M, Götzinger E, Hitzenberger CK. Investigation of polymer and polymer/fibre composite materials with optical coherence tomography. Measurement Science and Technology 2008; 19: 1–8.
  • 24. Awaja F, Arhatari B, Wiesauer K, Leiss E, Stifter D. An investigation of the accelerated thermal degradation of different epoxy resin composites using X-ray microcomputed tomography and optical coherence tomography. Polymer Degradation and Stability 2009; 94: 1814–1824
  • 25. Sabuncu M, Özdemir H. Recognition of Fabric Weave Patterns Using Optical Coherence Tomography. The Journal of the Textile Institute 2016; (11): 1406–1411.
  • 26. Schmitt JM. Optical coherence tomography (OCT): a review. Selected Topics in Quantum Electronics. IEEE Journal of Selected Topics in Quantum Electronics 1999; (4): 1205–1215.
  • 27. Sabuncu M, Özdemir H, Akdogan M. Automatic Identification of Weave Patterns of Checked and Colored Fabrics Using Optical Coherence Tomography. IEEE Photonics Journal 2017; (5): 6900708.
  • 28. Polipowski M, Więcek P, Więcek B, Jasińska I. Study on Woven Fabric Structure Using 3D Computer Image Analysis for In-Depth Identification of Thread Channels. FIBRES & TEXTILES in Eastern Europe 2015; 23, 2(110): 33-39.
  • 29. Pan R, Zhang J, Li Z, Gao W, Xu B, Li W. Applying Image Analysis for Automatic Density Measurement of High-tightness Woven Fabrics. FIBRES & TEXTILES in Eastern Europe2016; 24, 2(116): 66-72. DOI: 10.5604/12303666.1191429
  • 30. Ezazshahabi N, Tehran MA, Latifi M, Madanipour K. Surface Roughness Assessment of Woven Fabrics Using Fringe Projection Moiré Techniques. FIBRES & TEXTILES in Eastern Europe 2015; 23, 3(111): 76-84. DOI: 10.5604/12303666.1152508
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68cd68e5-cd8b-492a-9fbd-94f3acba0868
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.