PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flight delay prediction based with machine learning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: The delay of a planned flight causes many undesirable situations such as cost, customer satisfaction, environmental pollution. There is only one way to prevent these problems before they occur, and that is to know which flights will be delayed. The aim of this study is to predict delayed flights. For this, the use of machine learning techniques, which have become widespread with the development of computer capacities and data storage systems, is preferred. Methods: Estimations are made with three up-to-date techniques XGBoost, LightGBM, and CatBoost techniques based on Gradient Boosting from machine learning techniques. The bayesian technique is used for hyper-parameter settings. In addition, the Synthetic Minority Over-Sampling Technique (SMOTE) technique is also used, as the majority of flights are on time and delayed flights, which constitute a minority class, may adversely affect the results. The results are analyzed and shared with and without SMOTE. Results: As a consequence of the application, which was run on a data set containing all of an international airline's flights [18148 flights] for a year, it was discovered that flights may be predicted with high accuracy. Conclusions: The application of machine learning techniques to anticipate flight delays is new, but it has a lot of potential. Companies will be able to avert problems before they develop if delays are correctly estimated, which can generate plenty of issues. As a result, concrete advantages such as lower costs and higher customer satisfaction will emerge. Improvements will be made at the most vulnerable place in the aviation business.
Czasopismo
Rocznik
Strony
97--107
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Department of International Trade and Logistics, Faculty of Applied Sciences, Antalya, Turkey
autor
  • Department of Management Information Systems, Faculty of Applied Sciences, Akdeniz University, Antalya, Turkey
autor
  • West Mediterranean Exportaters Association, Antalya, Turkey
Bibliografia
  • 1. Abdelghany, K. F., Shah, S. S., Raina, S., & Abdelghany, A. F., 2004. A model for projecting flight delays during irregular operation conditions. Journal of Air Transport Management, 10, 385-394. http://doi.org/10.1016/j.jairtraman.2004.06.008
  • 2. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P., 2002. SMOTE: Synthetic Minority Over-Sampling Technique. Journal of artificial intelligence research, 16: 321-357. https://dl.acm.org/doi/10.5555/1622407.1622416
  • 3. Chen, J., & Li, M., 2019. Chained Predictions of Flight Delay Using Machine Learning. AIAA SciTech Forum, San Diego: American Institute of Aeronautics and Astronautics, Inc. 1-25. https://doi.org/10.2514/6.2019-1661
  • 4. Chen, T., & Guestrin, C., 2016]. Xgboost: a scalable tree boosting system. Proceedings of the 22nd acm sigkdd International Conference on Knowledge Discovery and Data Mining, 785-794. https://dl.acm.org/doi/10.1145/2939672.2939785
  • 5. Choi, S., Kim, Y. K., Briceno, S., & Mavris, D., 2016. Prediction of Weather-induced Airline Delays Based on Machine Learning Algorithms. 35th Digital Avionics Systems Conference, 1-6, IEEE. https://doi.org/10.1109/DASC.2016.7777956
  • 6. Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and psychological measurement, 20(1): 37-46. https://doi.org/10.1177%2F001316446002000104
  • 7. Dorogush, A. V., Ershov, V., & Gulin, A., 2018. CatBoost: gradient boosting with categorical features support. arXiv preprint, 1-7. https://arxiv.org/abs/1810.11363
  • 8. Dray, L. M., Antony, E., Vera-Morales, M., Reynolds, T. G., & Schafer, A., 2008. Network and Environmental Impacts of Passenger and Airline Response to Cost and Delay. 8th AIAA Aviation Technology, Integration and Operations Conference, 8890-8901. Anchorage. https://doi.org/10.2514/6.2008-8890
  • 9. Efthymiou, M., Njoya, E. T., Lo, P. L., Papatheodorou, A., & Randall, D., 2019. The Impact of Delays on Customers' Satisfaction: an Empirical Analysis of the British Airways On-Time Performance at Heathrow Airport. Journal of Aerospace Technology and Management, 11. http://dx.doi.org/10.5028/jatm.v11.977
  • 10. Fernández , A., García , S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F., 2018. Learning from imbalanced data sets. Switzerland: Springer. https://doi.org/10.1007/978-3-319-98074-4
  • 11. Feurer, M., Springenberg, J. T., & Hutter, F., 2015. Initializing bayesian hyperparameter optimization via meta-learning. In Twenty-Ninth AAAI Conference on Artificial Intelligence. https://dl.acm.org/doi/10.5555/2887007.2887164
  • 12. Friedman, J. H., 2001]. Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. http://doi.org/10.1214/aos/1013203451
  • 13. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., & Yuanyue, H., 2017. Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications, 73: 220-239. https://doi.org/10.1016/j.eswa.2016.12.035
  • 14. He, H., & Garcia, E., 2009]. Learning from imbalanced data. IEEE Transactions on knowledge and data engineering, 21(9): 1263-1284. https://doi.org/10.1109/TKDE.2008.239
  • 15. Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., Zhou, H., 2019. Evaluation of CatBoost method for prediction of reference evapotransportation in humid regions. Journal of Hydrology, 1029-1041. https://doi.org/10.1016/j.jhydrol.2019.04.085
  • 16. Hutter, F., Hoos, H., & Leyton-Brown, K., 2011. Sequential model-based optimization for general algorithm configuration. International conference on learning and intelligent optimization, 507-523. Berlin: Springer. https://doi.org/10.1007/978-3-642-25566-3_40
  • 17. IATA, 2019. International Air Transport Association Annual Review . Seoul: IATA.
  • 18. Jones, D. R., Schonlau, M., & Welch, W. J., 1998. Efficient global optimization of expensive black-box functions. Journal of Global optimization, 13(4): 455-492. https://doi.org/10.1023/A:1008306431147
  • 19. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., & Liu, T.-Y., 2017. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems, 3146-3154. https://dl.acm.org/doi/10.5555/3294996.3295074
  • 20. Kim, Y. J., Choi, S., Briceno, S., & Mavris, D., 2016. A Deep Learning Approach to Flight Delay Prediction. IEEE/AIAA 35th Digital Avionics Systems Conference [DASC] [s. 1-6]. IEEE. https://doi.org/10.1109/DASC.2016.7778092
  • 21. Kuhn, N., & Jamadagni, N., 2017. Application of Machine Learning Algorithms to Predict Flight Arrival Delays., 1-6.
  • 22. López, V., Fernández, A., García, S., Palade, V., & Herrera, F., 2013. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information sciences, 250: 113-141. doi: https://doi.org/10.1016/j.ins.2013.07.007
  • 23. Loyola-González, O., Martínez-Trinidad, J. F., Carrasco-Ochoa, J. A., & García-Borroto, M., 2016. Study of the impact of resampling methods for contrast pattern based classifiers in imbalanced databases. Neurocomputing, 175: 935-947. https://doi.org/10.1016/j.neucom.2015.04.120
  • 24. Manna, S., Biswas, S., Kundu, R., Rakshit, S., Gupta, P., & Barman, S., 2017. A Statistical Approach to Predict Flight Delay Using Gradient Boosted Decision Tree. International Conference on Computational Intelligence in Data Science, 1-5. IEEE. https://doi.org/10.1109/ICCIDS.2017.8272656
  • 25. Mazareanu, E., 2020, Global air traffic - annual growth of passenger demand 2006-2021. 09 25, 2020 statistica: https://www.statista.com/statistics/193533/growth-of-global-air-traffic-passenger-demand/
  • 26. McCarthy, N., Karzand, M., & Lecue, F., 2019. Amsterdam to Dublin Eventually Delayed? LSTM and Transfer Learning for Predicting Delays of Low Cost Airlines. The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence. 33: 9541-9546. Proceedings of the AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v33i01.33019541
  • 27. Mohamed, H. M., Al-Tabbakh, S. M., & El-Zahed, H., 2018. Machine Learning Techniques for analysis of Egyptian Flight Delay. J. Sci. Res. Sci., 35: 390-399. https://dx.doi.org/10.21608/jsrs.2018.25523
  • 28. Nakornsri, P., Apivatanagul, P., & Pisitkasem, P., 2020. Density Analysis Based Flight Delay Prediction withGenetic Algorithm Hyperparameter Tuning. Rangsit Graduate Research Conference: RGRC, 15: 2324-2337.
  • 29. NEXTOR, 2010. Total Delay Impact Study. Federal Aviation Administration Air Traffic Organization Strategy and Performance Business Unit.
  • 30. Simić, T. K., & Babić, O., 2015]. Airport traffic complexity and environment efficiency metrics for evaluation of ATM measures. Journal of Air Transport Management, 42: 260-271. https://doi.org/10.1016/j.jairtraman.2014.11.008
  • 31. Snoek, J., Larochelle, H., & Adams, R. P., 2012. Practical bayesian optimization of machine learning algorithms. Advances in neural information processing systems, 2951-2959. https://dl.acm.org/doi/10.5555/2999325.2999464
  • 32. Thiagarajan, B., Srinivasan, L., Sharma, A. V., Sreekanthan, D., & Vijayaraghavan, V., 2017]. A Machine Learning Approach for Prediction of On-time Performance of Flights. 36th Digital Avionics Systems Conference (DASC), 1-6, IEEE. https://doi.org/10.1109/DASC.2017.8102138
  • 33. Venkatesh, V., Arya, A., Agarwal, P., S, L., & Balana, S., 2017, Iterative Machine and Deep Learning Approach for Aviation Delay Prediction. 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics [UPCON] [562-567]. IEEE. https://doi.org/10.1109/UPCON.2017.8251111
  • 34. Yandex, 2017, CatBoost Now Available in Open Source. 10 07, 2020, catboost: https://catboost.ai/news/catboost-now-available-in-open-source
  • 35. Yandex, 2017. Feature importance. 06 03, 2020, catboost.ai: https://catboost.ai/docs/concepts/fstr.html#fstr_regular-feature-importance
  • 36. Yu, B., Guo, Z., Asian, S., Wang, H., & Chen, G., 2019. Flight delay prediction for commercial air transport: A deep learning approach. Transportation Research Part E, 125: 203-221. https://doi.org/10.1016/j.tre.2019.03.013
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68c7e1b9-e46c-457d-8e8a-d477926c07cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.