PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Collision–attachment law of lepidolite, feldspar and quartz with bubbles in the combined cationic and anionic collector system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study is to explore the collision–attachment law of lepidolite, feldspar and quartz during their interaction with bubbles by particle settlement method and bubble rising method under the action of combined collector. In this study, HQ-330 and dodecylamine were used as combined collector to separate lepidolite, feldspar and quartz by flotation. It also aims to analyse the relationship between collision probability, attachment probability, formation time of three-phase contact line and flotation recovery and the main factors affecting the formation time of three-phase contact line. Experimental results show that when the pH is 7 and the combined collector dosage is 100 mg/L, the separation of lepidolite from feldspar and quartz can be achieved. In the particle settlement experiments, the correlation between collision probability and flotation recovery is low, the correlation between attachment probability and flotation recovery is positive. In the bubble rising experiments, the formation time of three-phase contact line (tTPC) is negatively correlated with flotation recovery, and the combined collector changes tTPC by changing drainage time.
Rocznik
Strony
art. no. 155324
Opis fizyczny
Bibliogr. 24 poz., rys.,
Twórcy
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
Bibliografia
  • AHMED, N., G. J. JAMESON, 1985. The effect of bubble size on the rate of flotation of fine particles. International Journal of Mineral Processing, 14, 195-215.
  • OZDEMIR, O., C. KARAGUZEL, A. V. NGUYEN, M. S. CELIK, J. D. MILLER, 2009. Contact angle and buble attachment studies in the flotation of trona and other soluble carbonate salts. Minerals Engineering, 22, 168-175.
  • SLA, B., B. MPS, B. WY, B. YF, B. PW, A. CS, Experimental observations of bubble–particle collisional interaction relevant to froth flotation, and calculation of the associated forces. Minerals Engineering, 151.
  • SUBASINGHE, G., B. ALBIJANIC, 2014. Influence of the propagation of three phase contact line on flotation recovery. Minerals Engineering, 57, 43-49.
  • SUTHERLAND, K. L, 1948. Physical Chemistry of Flotation. XI. Kinetics of the Flotation Process. Journal of Physical & Colloid Chemistry, 52, 394.
  • Tarkan, H. M., D. K. BAYLISS, J. A. FINCH, 2009. Investigation on foaming properties of some organics for oily bubble bitumen flotation. International Journal of Mineral Processing, 90, 90-96.
  • WANG, W., Z. Z., K. NANDAKUMAR, Z. XU, J. H. MASLIYAH, 2003. Attachment of individual particles to a stationary air bubble in model systems. International Journal of Mineral Processing, 68, 47-69.
  • WEBER, M. E., D. PADDOCK, 1983. Interceptional and gravitational collision efficiencies for single collectors aT intermediate Reynolds numbers. Journal of Colloid & Interface Science, 94, 328-335.
  • YANG, H., Y. XING, L. SUN, Y. C., X. G., 2020. Kinetics of bubble-particle attachment and detachment at a single-bubble scale. Powder Technology, 370.
  • YOON, R. H., 2000. The role of hydrodynamic and surface forces in bubble–particle interaction. International Journal of Mineral Processing, 58, 129-143.
  • CHEN, L.-Y., SUN, Z.-Q., 2019. Attachment behavior of falling spherical plastic particle on static bubbles in water medium. Journal of Beijing university of aeronautics and astronsutics, 45, 1529-1535.
  • CHEN, Q.-Y., ZHANG, J.-S., WANG, D.-Z., 2001. New progress in the study of bubble and particle interaction. Metallic Ore Dressing Abroad, 17-19+24.
  • LI, M., JIANG, H., LIU, Z.-L., WANG, B., TENG, X., 2022. Research progress of dynamic interaction process between flotation particles and bubbles. The Chinese Journal of Nonferrous Metals, 1-14.
  • LI, S.-P., ZHANG, J.-M., Dilinur, Abdukade, WANG, Y.-L., 2020. Research Status and Prospect of Lepidolite Flotation Collectors. Protection and utilization of mineral resources, 40, 77-82.
  • MA, Z., LI, J.-W., 2018. Analysis of China's lithium resources supply system: status, issues and suggestions China mining, 27, 1-7.
  • NGUYEN, A. V., J. RALSTON, H. J. SCHULZE, 1998. On modelling of bubble–particle attachment probability in flotation. International Journal of Mineral Processing, 53, 225-249.
  • NGUYEN, A. V., H. J. SCHULZE, J. RALSTON, 1997a. Elementary steps in particle—bubble attachment. International Journal of Mineral Processing, 51, 183-195.
  • NGUYEN, A. V., H. J. SCHULZE, H. STECHEMESSER, G. ZOBEL, 1997b. Contact time during impact of a spherical particle against a plane gas-liquid interface: experiment. International Journal of Mineral Processing, 50, 113-125.
  • NGUYEN, A. V., H. STECHEMESSER, G. ZOBEL, H. J. SCHULZE, 1997c. Order of Three-Phase (Solid-Liquid-Gas) Contact Line Tension Probed by Simulation of Three-Phase Contact Line Expansion on Small Hydrophobic Spheres. Journal of Colloid and Interface Science, 187, 547-550.
  • NIE, D.-Q., HUANG, X.-Z., SUN, Z.-Q., 2019. Collision and attachment behavior between rising bubble and plastic plate in pure water. Journal of Beijing university of aeronautics and astronautics, 45, 1569-1574.
  • YANG, G., 2020. Research on the Flotation of Rubidium-containing Lepidolite and Feldspar under the Condition of weak acid. Beijing nonferrous metal research institute.
  • ZHANG, S.-J., 2015. Study on the Collision and Attachment Behavior Between Particle and Bubble in Coal Slime Flotation.China University of Mining and Technology (Beijing).
  • ZHOU, H.-P., ZHANG, Y.-B., LEI, M.-F., LIU, Y.-B., DU, X.-Y., GENG, L., 2019. Flotation Separation Test of Zinnwaldite in Yichun of Jiangxi. Non-metallic ores, 42, 64-67.
  • ZHUO, Q.-M., LIU, W.-L., XU, H.-X., SUN, X.-P., ZHANG, H., ZHENG, X., 2019. Research progress of relative motion between particles and bubbles in froth flotation. Journal of China coal society, 44, 2867-2877.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68c6a619-b1d8-4ef7-9f23-9f1de273186b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.